Standard Functions

unsigned long DecompressData(CFile *Fin, unsigned long nOffset, unsigned char *Dest, unsigned long FinalSize = 65536)

Decompresses a file to Dest. Memory must already be allocated to this pointer. FinalSize should be the size of the array passed in. nOffset should be the raw file offset (and not HiROM).

unsigned long DecompressData(unsigned char *CompressedData, unsigned char *Dest, unsigned long FinalSize = 65536)

CompressedData is the data you want to decompress. Decompresses a file to Dest. Memory must already be allocated to this pointer. FinalSize should be the size of the array passed in. This version of the function expects that you have copied the raw compressed data in with the length and all (so no offset). Handy if you load the ROM into memory before accessing its information. This version of the function is actually called by the other version of the function.

WriteHexFile(unsigned char *RawData, char *sFileName, unsigned short nWidth, unsigned long nSize)

This function will write out a file to hex with any particular length rows you want.

WriteOutMap(unsigned char *RawData, unsigned int width, unsigned int height, char *filename)

This will create a bitmap from byte data in greyscale. This would really only be useful for map data.

Bitmap Functions

- OBBitmap stands for OutBound Bitmap

- nWidth and nHeight should always be set with SetDim

- nBitPlanes will always need to be set before doing any processing of data (before ProcessData, Put8x8Chunk, etc)

ProcessData(unsigned char *RawData, unsigned char nDefaultColor = 255)

You can call this function for any bitmap that doesn't require special processing.
WriteOutBitmap(char *sFileName)

Saves bitmap to disk.

Put8x8Chunk(int dx, int dy, unsigned char *RawData, unsigned char PaletteShift = 0, unsigned char bFlip = 0)

Writes a 8x8 square into the image Data, processed from the RawData. dx and dy are the image Data offsets to draw at. PaletteShift is used for images that have more than 16 colors. bFlip indicates whether this square should be mirror imaged or not (useful for battle backgrounds).
SetDim(unsigned int width, unsigned int height)
Sets image dimensions and allocates memory for image Data.

SetPalette(unsigned short *RawPalette, unsigned short nColors)
Sets image palette by converting the 15bit RawPalette to 32bit. nColors indicates the total number of colors in the palette. When there are less than 255 colors, index nColors will be set to FF00FF, sometimes referred to as Fuchsia. It’s a fairly ugly color (pinkish-purple) seldom used in real images, making it nearly perfect for a transparency index.
SetPaletteGrey(unsigned short nColors = 256)
The bitmap will internally create a greyscale palette with as many colors as specified. Useful for when the actual palette is unknown.

SetDefaultColor(unsigned char nDefaultColor)
This will set the entire image to a default color. Only use this when it is necessary to process the data manually (i.e. when not calling ProcessData)

ResetTransparency(unsigned char nTransIndex, unsigned char nDefaultColor)
ResetTransparency should only be called when all data processing has finished. There is often a color associated with the transparency index that may not be the same color that you would like to use. This will change the index to whatever color index you provide. Useful for character portraits, monsters, most sprites..
Waveform Functions

SetDataSize(unsigned int nSize)

Allocates memory and sets up certain waveform header elements.
SetSampleRate(unsigned int nSampleRate)

Set the sample rate, or the speed with which the samples are played. I use 8000.
DecodeBRR(unsigned char *nRawData)

Decodes the raw data passed into it from BRR format to waveform. This is not an exact 1-to-1 process, with certain information being left out (such as sample rate).
WriteOutWaveform(char *sFileName)

Writes a standard Microsoft waveform to disk.
