Assembly for the SNES
An ASM tutorial

Author: Ersanio

Date of publishing: 3rd of February, 2016
Website: SMWCentral.net

Version: 2.2

Page 1 of 65



Preface

This is an ASM tutorial written by me, Ersanio. I wrote this tutorial in order to teach other
people 65¢816 assembly. In the past, kept bugging me to explain to them how assembly
works, and because | am too lazy to individually explain it to everyone, I just felt like doing it
the easy way. I’'m not good at teaching anyway, so I thought writing a complete tutorial was
sufficient. In this tutorial, I will try to cover everything as detailed as possible. If you don’t
like wall of text mixed with examples, this is not something for you. Also, personally I think
I’m better at making documents rather than explaining things individually to people, because
for documents I actually have the time to think thoroughly about topics.

This tutorial does NOT use Super Mario World’s RAM addresses by default. This tutorial is
for 65¢816 ASM used by the SNES in general. The tutorial is not game-specific.

Before you’re going to wonder: No, there is no specific ASM coding tool. Your ultimate
coding tool will be Notepad! (Or another ASCII text file editor). By default, my ASM files are
encoded in ANSI which never gave me any problems regarding assembling files so far. To
assemble an assembly file (usually with the extension .asm), you use high-end assemblers,
like xkas (author: byuu). xkas is a good assembler, although SMWCentral is in the process of
switching to asar (which is essentially the same as xkas, except it has more features and less
bugs). Particularly, in this tutorial I am following the syntax of xkas 0.06. I’d use later
versions but SMWC had xkas 0.06 as its standard for a long time. Also, if you find
trasm.exe/tricks assembler, trash it immediately. That thing is horrible.

I tried to make the previous version of this tutorial as beginners-friendly as possible.
However, in the end people recommended that you have basic ASM knowledge before
starting this tutorial. If you ever find a part you don’t understand, or you find a mistake in this
tutorial, don’t hesitate to contact me. I’d like to improve this tutorial any day to make it
beginners-friendly. If you don’t understand something, contact me, and I’ll try to improve the
wrong parts of this tutorial.

Chapters marked as """ teach fundamentals which are required in order to learn ASM, e.g.
a new counting system.

For the more technical people, please keep in mind I’'m using the mapping mode “LoROM”.

If you ever want to contact me for whatever reason, you can find me at:
http://www.smwcentral.net/ as user ID 3, Ersanio

http://ersan.io/ my own website

IRC: irc.caffie.net, channels #smwc and #serioushax, as Ersanio

Many special thanks go to certain ASM people for directly (and indirectly) teaching me
assembly:
Bio, Killozapit, MiOr, schwa, Smallhacker, smkdan, Sukasa, Roy

Many thanks go to certain people for providing feedback and suggestions:

spigmike, Roy, smkdan, S.N.N, andy_k_250, Domiok, reghrhre, Chaoticfox, Tails_155,
GreenHammerBro

Page 2 of 65


http://www.smwcentral.net/
http://ersan.io/

Changelog

Version 2.2

- Vast improvement over the previous version but because it has been years I forgot
what the changes are. The only notable changes are:

- Fancy code boxes

- Fancy points of advices

- Explanations have been made more clear

- Fixed very minor errors

- Thrown out the decimal mode because it isn’t even emulated properly in most
emulators, and it is used rarely anyway.

Page 3 of 65



Table of

Preface
Chapter 1:

contents

Introduction to 65¢816 Assembly

Chapter 2:

Hexadecimal, a new counting system Important

Chapter 3:

Ones and Zeros (+ Summary) Important

Chapter 4:

Values and Addresses Important

Chapter 5:

ROM and RAM Important

Chapter 6:

General registers Important

Chapter 7:

Addressing modes & other names Important

Chapter 8:

Little Endian

Chapter 9:

Loading and Storing

Chapter 10:

Branching, Labels and Comparing

Chapter 11:

Jumping to (sub)routines

Chapter 12:

Carry Flag

Chapter 13:

Adding and Subtracting

Chapter 14:

Bit Shifting

Chapter 15:

Bitwise Operations

Chapter 16:

Affecting Processor Flags manually

Chapter 17:

Moving chunks of data

Chapter 18:

Indexing with X and Y

Chapter 19:

Transfer

Chapter 20:

Miscellaneous Opcodes

Chapter 21:

Stack; Push and Pull Important

Chapter 22:

In-depth look at some opcodes

Chapter 23:

In-depth look into Processor Flags Important

Chapter 24:

In-depth look into Addressing modes

Chapter 25:

Indirect pointers to routines

Chapter 26:

Machine Cycles

Chapter 27:

Useless opcodes

Chapter 28:

Tips and tricks

Chapter 29:

Programming cautions Important

Chapter 30:

Useful links

Chapter 31:

Final notes

Page 4 of 65



Chapter 1: Introduction to 65¢816 Assembly

You might have heard of ASM, or 65¢816, or assembly. So what is ASM? ASM stands for
AsSeMbly. Breaking down the different parts of the acronym 65¢816, the 816 means that the
processor can be either 8-bit mode or 16-bit mode. The ¢ stands for CMOS, 65 means that this
processor is from the 65xx CPU family. The processor is supposed to be pretty revolutionary
for its time. In this tutorial I will explain mnemonics/instructions (I call them opcodes), and
how to use them properly. This tutorial will not focus on things like SNES hardware registers.

With 65¢816 ASM you can code stuff for SNES games (such as custom features for Super
Mario World). ASM is a 2nd generation programming language (which is low-level compared
to C# for example). It is readable machine code, which eventually gets translated into
hexadecimal machine code. All the opcodes consist of 3 letters, along with various
parameters. But before you start learning ASM, you’ll have to learn various basics which are
extremely important!

Page 5 of 65



Chapter 2: Hexadecimal, a new counting system

To program in 65¢816 ASM, you will need to grasp the basics of hexadecimal. Hexadecimal,
also known as hex, is a counting system like decimal (everyday counting system people use),
but there are additional 6 digits per place value. Take a look at this table for an example:

Decimal Hexadecimal
0 0x0
1 0x1
2 0x2
3 0x3
4 0x4
5 0x5
6 0x6
7 0x7
8 0x8
9 0x9
10 0xA
11 0xB
12 0xC
13 0xD
14 0xE
15 OxF
16 0x10

And the numbers will continue like 11, 12, 13 ... 1A, 1B, 1C and so on...

There are various ways to write hex numbers so readers cannot confuse them with actual
decimal numbers. You can prefix hexadecimal numbers with 0x, or $, or suffix them with H.
Example: 0x00, $00, 00H. In this tutorial, $ is always used but in most other programming
languages Ox is used instead.

In assembly, depending on the game’s programming, values $80 and higher are considered as
negative numbers, starting from -128, and counting down as the hex number increases. So...

Decimal Hexadecimal
126 $7E
127 $7F
-128 $80
-127 $81
[...] [...]
-1 $FF

The presence of negative numbers depends on the game’s programming though. For example,
a player can have positive and negative speed (going forward and backwards), but a player
can not have negative extra lives or points (because it usually doesn’t make sense). Of course,
there’s no number -0, hence you can reach -128 with negative numbers, because OXFF is
treated as -1, not “-0”

Page 6 of 65



Chapter 3: Ones and Zeros (+ Summary)

Another important counting system is “binary”. Binary has only 2 possible values for each
place value: 0 and 1.

In our current ASM context, a hexadecimal number with 2 digits is called a “byte”. Values
between $00-$FF is considered a “byte”. A byte is made of eight “bits”. These eight bits can
only have 0 or 1 as its value. For example, a byte can consist of the following bits: 1001 0110
or 1001 0101 or whichever from the 256 combinations of 0 and 1. The first bit (from the left)
1s called “bit 7 and the final bit is called “bit 0, NOT bits 1-8.

Learning binary can take some time. The easiest way to start off with learning binary is
memorizing the small table below:

7654 3210

0000 0001 = $01
0000 0010 =802
0000 0100  =$04
0000 1000  =$08
0001 0000 =810
0010 0000 =820
0100 0000  =$40
1000 0000  =$80

Note that all of these bolded values are in hexadecimal! Note that I also put a space after 4
digits for easier readability. 4 bits are called ‘nibbles’ and they are easier to read, because
one nibble corresponds to one digit in hexadecimal.

So as you can see, the blue bits are part of the blue digit of the hexadecimal numbers. The
green bits are part of the green digit of the hexadecimal numbers. Also, there are 16
combinations possible for 4 bits, so the numbers a hexadecimal digit can have is 0-F. This
makes binary «—— hex conversion very easy, all thanks to nibbles.

The SNES is capable of working with both 8- and 16-bit numbers. ““ 16-bit mode” of course
makes hexadecimal numbers use 16 bits: XXXXXXXX XXXX in binary, which is $xxxx in
hexadecimal. It has the same concept as the above paragraph. Example: 1111 0000 1111 0000
would be $FOFO. In this case, the first x here is called “bit 15” and the final x is called “bit 0”.

Binary is useful if you’re giving a hex number multiple purposes. That way, you can save
some bytes in the ROM or RAM.

For example, you can make the game programming say that bit 7 indicates that the level has
rain or not, that bit 6 indicates that a level layout is horizontal or vertical, that bit 5 indicates
that the level setting is during day or night, etc. You probably noticed that I’'m using “or” a
lot. Because bits can have two values only, the effects can be treated as “either this or that”.
The level has either rain or no rain, there’s no inbetween. Such values are called flags.

Page 7 of 65



Of course, bits aren’t solely restricted to be used in flags. In the end, combinations of them
make up a number.

Here is a general overview of counting in hex and binary:

Decimal Hexadecimal Binary
00 $00 %0000 0000
01 $01 %0000 0001
02 $02 %0000 0010
03 $03 %0000 0011
04 $04 %0000 0100
05 $05 %0000 0101
06 $06 %0000 0110
07 $07 %0000 0111
08 $08 %0000 1000
09 $09 %0000 1001
10 $0A %0000 1010
11 $0B %0000 1011
12 $0C %0000 1100
13 $0D %0000 1101
14 $0E %0000 1110
15 $OF %0000 1111
16 $10 %0001 0000

In assemblers, a % prefix indicates a binary value.

Sometimes you will encounter binary digits such as 11 or 110 0000. You’ll notice that they
aren’t 8 or 16 digits. This makes the binary number harder to read. To make them readable,
you will need to add leading Os to the digits until you have either 8 bits or 16 bits in total,
whichever you desire.

In 8-bit:
11 becomes 0000001 1
1100000 becomes 01100000

In 16-bit:
11 becomes 00000000 00000011
1100000 becomes 00000000 01100000

You can also convert decimal, hexadecimal and binary easily by using Windows calculator’s
programming mode. You can also find convertors online.

In assembly, you generally don’t have to convert between decimal and hexadecimal unless
you’re working with decimal numbers. For example, if you want a player to receive an extra
life after receiving 100 coins, you’ll have to check for the number 100 in the game’s
programming. In assembly, 100 is the hex number $64. If you don’t know this by heart, you’ll
just have to use a converter to convert 100 into its hex equivalent.

Page 8 of 65



If you’re working with things like speed however, you don’t really have to know how fast $53
is, as long as the speed is ‘good enough’ for you, you don’t have to worry about the decimal
meaning of $53.

Regardless, most assemblers also support decimal notations so you don’t have to convert
numbers to hexadecimal.

Page 9 of 65



Chapter 4: Values and Addresses "

Before you start coding in ASM, you also have to know what you are doing. Imagine the
following: You’re loading a value and decide to store it at an address. You won’t really know
what effect it will have, or even worse, not know if the store takes effect at all! This is why
you need to know how addresses work.

For the beginners: The SNES Memory is a field of numbers, either ROM or RAM. ROM is a
range of static numbers which can be read as code or numerical data. RAM is capable of
storing dynamic numerical data (numbers) which can be read and modified by code.

Each number has an “Address” assigned to it. The SNES memory is mapped from address
$000000 to SFFFFFF, although only $000000-$7FFFFF is used in most cases. The format of
an address is: $BBHHDD.

BB is the bank byte of the offset
HH is the high byte of the offset
DD is the low byte of the offset.

The addresses can be written in 3 ways: $BBHHDD, SHHDD and $DD, such as $7E0003,
$0003 and $03.

When DD is used alone, it is called a “direct page address”.
When HHDD are together, it is called an “absolute address”
When BBHHDD are together, it is called a “long address™.

The memory consists of multiple parts though. For example, when the high byte is $80 or
higher, and the bank byte is $6F or lower, you will be accessing ROM: $6F8000, $668823,
etc. Or if the bank is $7E, you will be accessing the RAM: $7E4932. Here’s a simple drawing
to get a general overview of the basic SNES memory (also known as a memory map):

Page 10 of 65



§70- §72- STE-
Address, B2 ong.g3F 640-S6F §71 7D STF

oooo
? Mirror of RAM $7E0000-S7E1FFF
$2000 *area you never should
Hardware registers have to access®
o
=
2 8
mﬁg
1E
2|8
$8000 | & |z
w0
g
ROM
ROM E
=
o
<
1]
g

As you can see, code executing in banks $40-$6F will not be able to access the mirror RAM
and the hardware registers, because they don’t exist in those banks. Accessing address
$251337 is exactly the same as accessing address $7E1337. There’s a chapter dedicated to the
ROM and RAM later in the tutorial. About “*area you never should have to access*” parts...
I don’t know what they are used for, but I never ever had to access these areas so far, but I
don’t think I’ve been missing out on anything crucial or revolutionary. About the ROM areas:
You can only load things from there, not store. It’s living up to its name: “Read-only
memory”’. [ mean, you could try storing things there, but nothing will change at all.

Values also have names. Values are numbers you use to fill in a parameter, or for math, or
other things.

A 2-digit value is a byte ($XX). Abbreviation is “db” for tables
A 4-digit value is a word ($XXXX). Abbreviation is “dw” for tables
A 6-digit value is a long ($XXXXXX). Abbreviation is “dl” for tables.

Tables are later explained in the indexing chapter.

Ifa value is 1, 3, or 5 digits, add a leading zero to it (for example: $1 — $01,

$6969F — $06969F, and so on). You should do this for easier readability. Keep in mind that
we’re still working with hexadecimal here!

Also, each address can hold a single byte as we established earlier. Writing to a specific

address in 16-bit mode will involve address+1 too, because a 16-bit number takes up two
bytes.

Page 11 of 65



Chapter 5: ROM and RAM o

This is probably the most important part of this tutorial. RAM is basically a bunch of dynamic
variables used by the ROM. ROM and RAM are located in the SNES memory (see chapter 4).

Once again, ROM means ‘Read-Only Memory’. It cannot be modified by using ASM. You
can say it is the game itself, which contains all the ASM data, codes, tables, graphics, music,
and so on, which emulators can load and run. Or: It’s the .smc/.sfc/.fig/etc. file.

RAM is ‘Random Access Memory’. Another word for RAM is simply “Memory”, but RAM
is the preferred term. It’s a collection of bytes which contains dynamic variables of various
functions. The SNES RAM is 128kB big, and it is located at offset $7E0000-$7FFFFF.

A “RAM address” is a specific place in the RAM. There’s nothing else to it. For example, if
we say that RAM address $7E0000 contains the number $55, then RAM $7E0000 contains
the number $55. It’s that simple.

The RAM can hold numbers important to the game but which can change a lot. For example,
extra lives, or the player’s score. For example, if you write $04 to the player’s extra lives, then
the player will have exactly 4 extra lives. It doesn’t get added up to the current extra lives. As
for the ROM, it holds the game’s logic and art like the game’s programming and graphics.
SNES RAM is completely dynamic. There is no such rule as “Address $7E0120 is used for
lives in every SNES game ever.” You define the purpose of RAM yourself by writing ASM
code.

A small portion of the RAM is also used for the “stack”. This portion of RAM is often located
at $7E0000-$7E1FFF. The stack is explained later in this tutorial.

RAM addresses $7E0000-$7E1FFF are also mirrored at the following locations:
$000000-$001FFF
$010000-$011FFF
$020000-$021FFF

$3F0000-$3F1FFF

So for example, writing to $210000 would equal writing to $7E0000 automatically. You can
find this information in the drawing in the previous chapter.

When the SNES resets, the RAM also resets (on real hardware, it resets to random values. In
emulators it’s often $55). But there’s also a non-resetting RAM which allows the game to
save data. This RAM is called the SRAM. It is also 128kB big, and it is located at
$700000-$71FFFF, although the final size depends on the ROM specifications itself. The
SRAM isn’t mirrored in other banks. SRAM behaves exactly like the RAM; you can store
anything and load anything from it, but the values do not get cleared when the SNES resets!
The SRAM is backed up with a battery on a real SNES. When the battery dies or is removed,
SRAM will cease to function. On emulators, SRAM is stored in the well-known .srm files.

Page 12 of 65



Chapter 6: General registers

In SNES, there are several “registers” used for different purposes. They can not be missed,
they’re one of the reasons why the SNES can function properly. Basically, registers are
“global variables” which hold various information, or can be used for math and logic and all
those fancy stuff! These registers can be accessed anytime.

Accumulator: Let’s just call this “‘A’. This register can be accessed in either 8-bit mode or
16-bit mode. A is used for general math, bit shifts, bitwise operations and loading indirect
values. A can also hold general-purpose variables to store things to the memory and other
registers. In reality, this register is always 16-bits long. When A is in 8-bit mode, you can
automatically access these yy digits: $xxyy. You can access the xx AND yy digits when
you’re in 16-bit mode. The xx digits don’t get cleared when A enters 8-bit mode. Certain
instructions use all 16 bits of A regardless of 8 or 16-bit mode of the SNES CPU.

X & Y registers: Also known as X and Y. They are separate registers, and both of them have
exactly the same purposes and behave exactly the same: These registers are made for
indexing, explained later in this tutorial. These registers can also be 8-bit or 16-bit. X and Y
can also hold general-purpose variables to store things to the memory and other registers.
When X and Y leave 16-bit mode, their high bytes gets cleared to the number $00. X and Y
are “paired” — they can be 8-bit or 16-bit mode only at the same time. One of them can’t be
8-bit while the other one is 16-bit.

Direct page register: It is a 16-bit register. When you use the direct page addressing mode
(explained later in this tutorial), it adds the direct page address with the value in the direct
page register. If you’re a complete beginner, don’t worry about this register.

Stack Pointer Register: This 16-bit register holds the pointer to the stack in the RAM,
relative to RAM address $000000. To affect this register you either need to use TXS (in 16-bit
XY mode) or TCS. The register dynamically changes, as you push and pull values to the stack
(explained later in the tutorial).

Processor status register: This holds the current processor flags’ status in 8-bit format.
Remember that there are 8 processor flags, and they all occupy one bit. Changing this register
would alter the SNES behaviour greatly. Processor flags are explained later in this tutorial.

Data bank register: This holds the current data bank. When you load something using
absolute addressing (see next chapter), the instruction will use this register to determine the
loaded location’s bank. This 8-bit register can only be changed explicitly. In other words, you
will have to change it yourself using various opcodes, since it doesn’t happen automatically.

Program bank register: This register keeps track of the current bank of the currently
executed instruction. So if there is a code executed at bank $02, this register will hold the
value $02. This register is always updated.

Program Counter: This register keeps track of the current high and low bytes of the

currently executed instruction. So if there is an instruction executed at $018009, this register
will hold $8009 as its value. This register is always updated.

Page 13 of 65



Chapter 7: Addressing modes & other names

NOTE: Prior to reading this chapter, please make sure you understand chapter 4 first!

There are different addressing modes in 65¢816. Addressing modes are used to make the
opcodes access data and memory differently, such as indexed or direct indirect (explained
later in this tutorial). Using them wisely, you can access data and memory in many ways. For
example, you can immediately load a value in some register such as A, X or Y, or load a byte
from the ROM into memory, and so on. Keep in mind that not all the opcodes supports all the
types of addressing modes. Here are some of the important addressing modes you’ll find
yourself use very often.

Immediate 8/16 bit: #3XX (or #$XXXX)

This addressing mode defines an absolute value. The # stands for ‘immediate’, while the $
stands for hexadecimal. # solely makes the input decimal (gets converted to hexadecimal
automatically by the assembler), adding a $ (so, #$) makes the input hexadecimal. For
example, #10 is the same as #80A. Think of an absolute value as a number. Yes, that’s really
it.

Direct page: This addressing mode defines a direct page address, $XX.

The direct page is the last 2 hex digits of a complete (long) address: $XX:XXXX, for
example, $7E0011 as direct page would be $11. When loading from a direct page address, the
bank byte is ALWAYS treated as $00. If you do “LDA $11” for example, you would load the
contents of $7E0011 into the Accumulator.

Absolute: This addressing mode defines an absolute address, $XXXX.

An absolute address is the last 4 hex digits of a complete address: $XX:XXXX. The bank is
determined by the data bank register (see previous chapter).

Long: This addressing mode defines a long address, $XX:XXXX.

Long addresses deliver fewer complications when dealing with banks and all those things,
because you don’t have to worry about what the data bank register contains for example. With
long addresses, you can access any offset in the SNES memory.

There are also indexed versions of direct page, absolute and long addresses, and much more...

They will be explained near the end of this document because you don’t need them at this
point in the tutorial. It would make things only more confusing at the moment.

Page 14 of 65



Chapter 8: Little Endian

In the ROM, RAM and SRAM, 16-bit and 24-bit values always appear in little-endian. Take
for example, we use an opcode which uses $1234 as its parameter. The opcode ends up in the
ROM, as well as the number $1234. However, $1234 doesn’t appear as $1234. It appears as
$34 $12 in the ROM. It’s because hexadecimal bytes are stored backwards like that, which is
called little-endian.

When this number is read in 16-bit mode, it reads $1234, NOT $3412. The SNES reverses
this automatically again. If this number is read into the RAM, it is stored as $34 $12, much
like in the ROM.

24-bits numbers such as $123456 are stored in the ROM as $56 $34 $12. You could try to
read this into the RAM, but the SNES cannot read 24-bit values directly into a register such as
A, X and Y to begin with!

You can write everything in normal ASM without worrying about little-endian, because
everything is dealt with automatically! You can worry about little-endian when you deal
with 16-bit values in 8-bit mode, for example: You’re trying to access the value $00 in RAM
$7E0000. The value $0011 was stored there earlier, so $7E0001 is involved too.

In this case: RAM $7E0000 contains the value $11, and $7E0001 contains the value $00. A
common mistake is that people try to access $7E0000 here! The actual RAM address you
need to access is $7E0001. This is where little-endian might get very confusing.

If you don’t understand this chapter at first, don’t worry. It isn’t that important, but it is

essential when dealing with “pointers”. Feel free to revisit this chapter sometime later in the
tutorial.

Page 15 of 65



Chapter 9: Loading and Storing

You’ve made it to the opcodes section. Congratulations! The first thing you definitely
should know is how to load and store data using various SNES registers. The basic opcodes
for loading and storing data are LDA and STA.

You will get 3 registers to work with. They are: A (Accumulator). Y (Call it Y) and X (Call it
X). Although these registers can be either in 8 or 16-bit mode, in this tutorial we will
consider them 8-bit by default.

Here is our very first two opcodes:
LDA - LoaD into Accumulator
STA - STore from Accumulator

Opcode LDA loads a value in A, and STA stores A into an address. We will use RAM
addresses for the sake of simplicity. Here is a short example for loading and storing:

Let’s break this down and look into it bit by bit!
LDA #$03

This loads the number $03 into A. The contents of the A register is now $03. LDA can load
numbers ranging from #$00-#$FF in 8-bit mode and #$0000-#$FFFF in 16-bit mode.

STA $7E0001

This stores the contents of the A register into RAM address $7E0001. RAM Address $7E0001
now contains the number $03, because A was $03 too. The contents of the A register is not
cleared. Therefore, A remains $03. This is useful in case you want to store this same value
into multiple addresses.

Also, for the love of God, please don’t use STA #$7E0001 or any form of STA #$ because
that doesn’t exist. There is no logic behind storing the value of A into an absolute value.

=POIMT OF ADVICE=-

Remember, using $ instead of #$ after an opcode means that the parameter is an address,
not an immediate value.

On a side note: Putting a semicolon (;) will allow everything beyond that to be ignored by the
assembler, during the assembly of the code. In other words, ; is used to place comments.
Example:

;This is a comment!

Page 16 of 65



Of course, what would be the use to store things to a RAM address when you don’t know how
to access the address again? You can load a RAM address’ contents into the A register by
using LDA again. Here is an example.

Again, we will break this down!
LDA $7E0069

This will load the contents of the RAM address $7E0069 into A. Let’s assume that the
contents were $33. So now, A has the number $33, what about the RAM address $7E0042? It
will remain unchanged because we haven’t reached that code yet. What about $7E0069? It
also remains unchanged, because LDA copies the number rather than extracting it from the

address. Note that this time we have used $ instead of #$. This is because we wanted to access
a RAM address. In the end, A has $33 and RAM $7E0069 has $33 too.

STA $7E0042

So we have reached this code. This instruction will store the contents of the A register into the
RAM address $7E0042. Of course, A will remain unchanged. RAM address $7E0042 is now
$33. In short: this code will copy the contents of $7E0069 over to $7E0042.

Now that we have learned the basics of loading and store values into addresses, let’s introduce
four new opcodes:

LDY - LoaDintoY

STY - STore fromY

LDX - LoaD into X

STX - STore from X

The above opcodes behave exactly like LDA and STA. The only difference is that these make
use of the X and the Y registers instead of the accumulator. For example:

Would store the number $03 into RAM address $7E0001, by utilizing the Y register. To use
the X register, use LDX and STX. As for why I have used $0001 instead of $7E0001, see the
end of the chapter for an explanation.

You can’t do the following:

LDY #S03

STA $0001

Actually, you can, but you wouldn’t get the result you expected. If you did this, it would load
number $03 into Y, and store whatever is in A into RAM $7E0001.

Page 17 of 65



There is another opcode which stores the number $00 into addresses directly:
STZ - STore Zero to memory

Basically, this opcode stores the number $00 into an address. It doesn’t even need the A, X or
Y registers to load $00 first.

If you want to make a code that directly stores $00 in a RAM address, you could make it use 1
line:

$00. The A register is unaffected.

STZ will store zero to a RAM address specified. After this opcode, RAM address $7E0001
will now contain the number $00. For now, don’t wonder why I shortened $7E0001 down to
$01. I will explain that in the end of this chapter. Using STZ when A is in 16-bit mode will
store $0000 to RAM address $7E0001 and $7E0002.

Okay, so (hopefully) you understand how loading and storing values works now. But those
were only 8-bit values. There are times where you will need to use 16-bit values. This is the
part where you will get confused, because this time you will involve 2 RAM addresses at the
same time during loading and storing. Let’s start from the beginning again, but in 16-bit A
mode this time!

In 16-bit A mode, the following features take effect:

e During reading from the memory, you will involve 2 RAM addresses as opposed to 1.
The RAM addresses involved are always adjacent to each other.
Above 2 features goes for writing to the memory too.
Constant numbers (#$) are now 16-bit numbers.
Loaded and stored values are little-endian in the memory, but you don’t have to worry
about that at all.

Let’s begin with an example immediately:

And breaking it down:
LDA #$0001

This will load a 16-bit value into A. So A has now number $0001. If this wasn’t a 16-bit
number, the game would interpret the opcode wrong and most-likely crash the game! This is
because the game expects a 16-bit parameters, but you only give it an 8-bit one. The game
therefore takes the next opcode as part of the 16-bit parameters causing the following opcodes
to become bogus.

Page 18 of 65



=-POIMT OF ADVICE-

Each opcode (disregarding the parameters) becomes an 8-bit number when assembled. This

is why you only see hexadecimal numbers when you open a ROM in a hex editor. To
disassemble numbers into ASM code, you’ll need to use a “disassembler”.

STA $7E0000

This will store the 16-bit A value into the RAM address $7E0000 AND $7E0001. Why two
addresses? Because a 16-bit number won'’t fit into an address. Remember that an address
represents an 8-bit value, so two addresses represent 16-bit. $7E0000 will now have the
number $0001.

Executing these 2 instructions, if we take a peek into the RAM, we see this:
$7E0000 [01] [00] [XX] [XX] [XX] [...]

The first green number is the number of RAM address $7E0000, second one belongs to
$7E0001, third one belongs to $7E0002, etc. As you can see, RAM is just a range of bytes.

As you can see, the stored number became little endian. If we try to load it back into A, we
would have to use LDA $7E0000. It would load the number $0001 into A again IF A is in
16-bit mode. If you tried to load it back when A was in 8-bit mode it would load the number
$01 into A instead.

There’s a 16-bit X and Y mode too. This is not related to 16-bit A mode at all. So if A is 8-bit
mode and XY are 16-bit mode, the following is definitely possible:

Remember how I’ve shortened a RAM address down to 4 and even 2 digits earlier when I was
demonstrating STZ? It’s possible to shorten down addresses indeed. But there are
prerequisites.

In order to shorten a long RAM address into a 4-digits address, the address has to be between
$7E0000-$7E1FFF. $7E1234 can be shortened to $1234 for example. If you shorten address
$7E2000 or higher into a 4-digit address, you’ll write to areas other than the RAM. It has to
do with the data bank register and the memory map explained in the previous chapters.

If you want to shorten long RAM addresses to a 2-digit address, the high and low bytes of the
long address must never exceed the number $OOFF. The address you want to store to must be
in bank $00 or $7E. So you can shorten LDA $7E0001 to LDA $01 and STA $000001 to STA
$01. Keep in mind that when you use 2 digits for loading and storing, the bank is always $00
by default, regardless of the data bank! This means you can use 2-digit addresses for RAM
addresses $7E0000-$7EO0FF. Remember, RAM $7E0000-$7E1FFF is mirrored in banks
$00-$3F by default.

Page 19 of 65



Chapter 10: Branching, Labels and Comparing

What if you want to execute special code when certain conditions are met? You need to use
branching, labels, and comparing for this.

Now introducing an opcode to compare values inside the Accumulator:
CMP - CoMPare A with

CMP takes whatever is in A, and compares it with a specified parameter. After using a CMP
instruction, you need to use an opcode that will perform the type of “branch” that you wish to

OocCcCur.

One example of a branch:
BEQ - Branch if EQual

BEQ branches if the compared value is equal to the contents of A:

A

This code is a bit big to break it down, so I will summarize it. This code will store zero ($00)
in $7E0019 when $7E0000 has the number $02 as its content. And if it has NOT $02 as its
content, the code will store number $01 in $7E1245. BEQ will jump to a portion of the code
when compared values are equal, skipping certain code a bit! In this case, the game jumps to
the code at “Labell”

Labels are basically text placed to locate an entry point of a jump or a “table”. Labels are no
opcodes or anything. It’s basically an easier way to specify an offset/address, because the
labels get turned into numbers by the assembler. It is good practice to not name labels after
opcodes. Give them meaningful names instead for your own sake.

Page 20 of 65



Another example of a branch:
BNE - Branch if Not Equal

BNE is the opposite of BEQ. It branches when the value does NOT match with A:

e of RAM adc 0000 into A

, finish the code, do nothing.

> something in RAM $7E1245

So, if RAM address $7E0000 has the value $02, the code will store the value $01 to RAM
address $7E1245. If RAM address $7E0000 doesn’t have the value $02, the code will do
absolutely nothing.

It’s also possible to compare 16-bit numbers. Just change CMP #$xx to CMP #$xxxx.
Furthermore, you can compare RAM addresses with each other too. See the next example:

When RAM addresses $7E0000 and $7E0002 have the same numbers, the branch will be
taken.

You can also compare values by using the registers X and Y:
CPX - ComPare X with
CPY - ComPare Y with

For example, you can load a value into X and compare it with a number. Not only A is
capable of doing comparisons. Example:

It will have the same result as the above example. You can compare register Y too by using
CPY. However, the following is wrong:

CMP $02 would try to compare register $7E0002 with the register A, instead of X. The
comparison will be bogus, and the branch would have unwanted effects.

Page 21 of 65



Some other miscellaneous branching opcodes are the following 8 branches. They are divided
in 4 groups:

Signed branching:
BMI - Branch if MInus
BPL - Branchif PLus

BMI branches if the last operation is a minus/negative value. Minus values are the numbers
$80-$FF.

BPL branches if the last operation is not a minus value; Branch when number $00-$7F

Greater or lesser and/or Carry flag:
BCS - Branch if Carry Set
BCC - Branch if Carry Clear

BCS branches if the loaded value is equal or greater than the compared value. Additionally,
this also branches when the carry flag is set.

BCS branches if the loaded value is lesser than the compared value. Additionally, this also
branches when the carry flag is clear.

Overflow flag:
BVC - Branch if oVerflow Clear
BVS - Branch if oVerflow Set

BVC branches if the overflow flag is clear.
BVS branches if the overflow flag is set.

The “overflow” flag is a processor flag, explained later in the tutorial.

Unconditionals:
BRA - BRanch Always
BRL - BRanch always Long

BRA will ALWAYS branch, it doesn’t even check for conditions.
BRL does the same, but it has a longer reach for labels. They’re pretty much like JMPs.
Useful if your code executes in RAM, because its branch destination is relative.

=PFOINMT OF ADVYICE=-

The branching opcodes have a range of -128 to 127 bytes. This means they can either jump
128 bytes backwards, or they can jump 127 bytes forward, relative to the program counter.

One exception is BRL (Branch Long). BRL has a range of 32768 bytes (8000 in hex), which
is a WHOLE bank. If the branch goes out of range, you’ll have to find a way to put the
destination label into the branch’s reach. The tips and tricks chapter covers this. A branch
out of reach is called “branch out-of-reach error” by various assemblers.

Page 22 of 65



Chapter 11: Jumping to (sub)routines

What if you want to use the same code twice, but you don’t want to write, for example, the
exact same 200 lines of codes again? You will make use of the jumping opcodes to jump to
the code you want to use.

There are two jumping opcodes:
JSR - Jump to SubRoutine
JSL - Jump to Subroutine Long

You can consider JSR and JSL as function calls basically. Here is a quick example of the
usage of JSR:

d at Labell (current bank)
s line

This code will store $01 into $7E0001, will store $03 into $7E0000 AND execute the codes at
Labell at the current bank, so store $02 into $7E0002.

=POIMT OF ADVICE=-

The opcode JSR will get assembled as JSR $XXXX by the assembler, but you shouldn’t
worry about that. Like I said, labels specify an offset. The assembler automatically converts
the label into an offset/address. Furthermore, because JSR uses an absolute address as its
parameter, it is limited to its current bank.

There is an opcode required to finish a subroutine:
RTS - ReTurn from Subroutine

The RTS will cause the game to jump back to the opcode after the latest used JSR.

JSL has the same purpose as JSR, except it can jump everywhere.

ute the located at ROI

Page 23 of 65



This code will store the number $01 to RAM address $7E0019, and will execute the code at
ROM address $1AFBO00. You can select every SNES offset when you use JSL. It is actually
pretty simple. After executing the JSL, the code will return to the LDA #$03. Then the code
stores the number $03 to RAM address $7E0000.

JSL uses another opcode to return from the subroutine:
RTL - ReTurn from subroutine Long

There are two other jumps which do NOT automatically return to the opcode after the jump:
JMP - JuMP
JML - JuMp Long

JMP and JML will ignore EVERYTHING after the instruction when you use them. Example:

What JMP/JIML does is jumping to another location and executes the codes there, ignoring
everything after the opcode. The RTS in Labell does NOT jump back to LDA #$03. Instead,
it just finishes the current subroutine it was in.

JMP is limited to the current bank, like JSR. It will ignore everything like JML too. JML can
jump anywhere like JSL. JMPs and JMLs don’t have a return instruction, but you can still use
an RTS or RTL to return from a JMP/JMP depending on the current situation. Example:

ne code ends here.
lute jump to

;This DOESN’T return to Labell.

=PFOINMT OF ADVYICE=-

The Program Bank does NOT get updated when you use a JMP or JML. You will have to
do that yourself.

=PFOINMT OF ADVYICE=-

Remember how JSL/JML can jump everywhere? They can even jump to RAM, which
implies code can be executed in RAM. It is true! You can write numbers to RAM which can
be interpreted as code which can be executed. Not sure if this is practical however.

Page 24 of 65



Chapter 12: Carry Flag

The “Carry flag” is an additional bit used for various things like math, bit-shifting or
branching. For example, when the carry flag is set, during addition by ADC (next chapter), an
extra 1 gets added. Useful for pseudo 16-bit maths (explained in the tips and tricks chapter).
This bit just can’t be missed.

The “Carry Flag” is basically the “9™ bit” of the A register when A is in 8-bit mode, and the
“17" bit” when A is in 16-bit mode. Assuming A is in 8-bit mode, the carry flag will look like
this:

BBBBBBBB C

Where C is the Carry Flag and B is the byte — in other words the A register content.

When the carry flag is clear, the carry (C) will be 0
When the carry flag is set, the carry (C) will be 1

You can not directly use and change the carry flag by using loading/storing instructions. The
carry flag is automatically used and altered by the SNES during various math operations.

There are also two instructions to alter the carry flag directly without loading or storing or
calculating anything:

SEC - SEt Carry flag

CLC - ClLear Carry flag

To change the carry flag to 1, use SEC.
To change the carry flag to 0, use CLC.

Depending on the carry flag, various mathematical instructions will behave different. You can
see it clearly in the next chapter!

Page 25 of 65



Chapter 13: Adding and Subtracting

At some point, you would probably want to increase RAM address $7E000F by $01, but LDA
#$01 STA $7E000F won’t work, because it simply changes your RAM Address’ contents to
$01 — not increase it by one.

There are opcodes to increase or decrease a value by 1:
INC - INCrease
DEC - DECrease

S ; Increase the value in $7E000F by one

; Return

3 se the value in $7EQ00F by one

When INCing or DECing a RAM Address’ contents, keep in mind that A does not get
affected.

Although, it IS possible to increase or decrease the value inside A, by using INC A or DEC
A. In this case, you give “A” as the parameter instead of an address.

There are also instructions to increase or decrease the value inside X as well as Y:
INX - INcrease X
DEX - DkEcrease X
INY - INcrease Y
DEY - DEcrease Y

You cannot use the above 4 opcodes to manipulate an address. They are solely used for the X
and the Y registers.
=POIMT OF ADVICE-

INC and DEC don’t work with long addressing modes. They only work with absolute or
direct page addressing modes. Therefore, instructions like “INC $7E000F” do not exist.

Instead, you should use INC $000F or even INC $OF.

Why there isn’t a long addressing mode? Because the engineers made it that way. You’ll
just have to deal with it.

But what if you wanted to increase or decrease the value in a RAM Address by 95? You don’t
want to write INC or DEC 95 times, do you?

The solution to above problem are the following four opcodes:

ADC - ADd with Carry
SBC - SuBtract with Carry
SEC - SEt Carry flag
CLC - ClLear Carry flag

Page 26 of 65



ADC adds a value to the Accumulator, not a RAM address like people mistake it. SBC
subtracts it from A.

To use ADC, you first need to get the value from a RAM address into A, use ADC to change
A, then store A back into the RAM Address. Here is a simple example:

the current value in A

A, Tt is $04 in this

This will add 4 to the RAM address’ content. So if it was $35, it would become $39. If you
wouldn’t clear the carry flag, it would add $05 instead of $04. (Hence Add with Carry)
What if you wanted to decrease a value of a RAM address by $04?

nt value in A

subtract from A. It is $04 in this case.

This will subtract 4 from the RAM address’ content. If you didn’t set the carry flag, it would
subtract $05 instead of $04. In short: when adding, CL.C, when subtracting: SEC.

What is the relation with the carry flag and ADC/SBC, you might wonder.

When you do ADC, and the value in A wraps from $FF — $00, the carry flag will be set. The
same case is in 16-bit A, where you go from $SFFFF — $0000

When you do SBC, and the value in A wraps from $00 — S$FF, the carry flag will be cleared.
This is useful for “pseudo 16-bit math” which will be explained later. The same case is in
16-bit A, where you go from $0000 — $FFFF

Adding and subtracting also involves the “signed overflow” processor flag. To know where
this overflow flag is, please visit the in-depth look into processor flags chapter. Overflow only
happens when you add a negative value to a negative value, and you get a positive value as a
result which wouldn’t make sense in the math world. Or if you subtract a number from a
negative value and you get a positive value as a result. See the example below, for ADC:

number

num

It’s mathematically impossible to gain a positive number from two added negative values, so
overflow gets set.

Page 27 of 65



Here is an example for SBC:

; Random ne tive number

numbers

It doesn’t make sense! If you subtract something from a negative number, and you get a
positive number as a result, the overflow flag will be set.

=POINMT OF ADVICE-

16-bit mode math exists.

Page 28 of 65



Chapter 14: Bit Shifting

What if you want to divide a value at a RAM address by 2? Or multiply it by 2? There are
opcodes for that!

ASL - Accumulator or memory Shifts Left
LSR - Accumulator or memory Shifts Right

You need to use ASL to multiply, and LSR to divide. They are officially called bit shifting
though. Here is an example of multiplying:

; Multiply the contents of $7E0002 without affecting A.

; Return

This code multiplies the contents of $7E0002 by 2. What if you want to multiply it by 4? You
need to use ASL $02 two times then. If you use ASL multiple times, you will multiply by 2,
4,8, 16, 32, etc. LSR has this pattern too.

To divide by 2, you need to use LSR. Here is an example:

; Divide the contents of $ by 2 without affecting A.

; Return

This code will divide the contents of $7E0002 by 2. So if $7E0002’s content was 04, it would
become 02. You can also divide it by 4 or higher by using the method like ASL - stacking the
opcodes.

Actually, these are different explanations I came up with for beginners. For people who want
to go a step further: The bits in A or memory will get shifted when you use ASL/LSR. Let’s
take for example, this code:

$02 = 00000010 in Binary
When you use ASL, all the bits will shift to the left 1 time. So the result will be like:

00000100

This makes all the bits shift to the left, resulting in a normal multiplication, resulting in
A =504

Page 29 of 65



LSR works exact the opposite; it shifts all the bits to the right:

00000010

00000001

This makes all the bits shift to the right, resulting in a normal division, resulting in A = $01

The carry flag has an important role during the bit shifting process. When bit 7 is set, and you
do a LSR, bit 7 will be cleared, and bit 0 will move into the carry flag, either setting the flag
or clearing it. It depends on the value of the bit shifted into carry. If the bit is 0, the carry flag
clears. If the bit is 1, the carry flag gets set. If you do an LSR again, the carry flag will be set
or clear again, depending on the result. Examine the examples closely, and it will begin to
make sense. Examples:

Usage of ASL and Carry Flag:

There are 2 instructions, which are ALMOST the same as LSR and ASL:

ROR - ROtate acccumulator or memory Right
ROL - ROtate acccumulator or memory Light

They behave the same as LSR and ASL, except they are using the carry flag as an extra bit.
Examine the following examples closely too, and you will understand what I mean

Usage of ROL and Carry Flag:

) 0000. C

0001.

0.

Usage of ROR and Carry Flag:

Page 30 of 65



As you can see, the carry flag IS actually involved with this bit shifting operation. The bits
keep wrapping around in circles, unlike ASL/LSR! Hence they are called “rotate”.

Page 31 of 65



Chapter 15: Bitwise Operations

This is one of the difficult parts in ASM hacking. Yet, bitwise operations are extremely
useful. You could, for example, discard bits 7-4 in a byte. There are many bitwise operations
which are also used in programming in general, not just ASM. I will go through the opcodes
one by one, then give some practical examples of why these opcodes could be useful.

AND - Logical AND

AND logically compares A with the value after the opcode, and stores the result into A.
Example:

So after this operation, A will become $90, since AND stores the result back in A. AND is
sometimes used to isolate specified bits for future use. AND compares the specified bits. If
there are two bits which are set, the resulting bit will be a 1. Compare the first 2 bytes
downwards in the above example, then look at the result.

If one of the bits has 0, the resulting bit will be 0. Look at this “truth table”:

Compared bit AND operation Result
1 AND 1 1
0 AND 1 0
1 AND 0 0
0 AND 0 0

In short, whenever there is a 0 in A or the AND value’s bit, the resulting bit is also 0.
ORA - Logical OR
ORA is basically used to set specific bits:

0000

) 0111
0111 = SF7

If one of the bits has 1, the resulting bit will be 1. After ORA, the result will be stored in A for
future use. Look at this truth table:

Compared bit ORA Operation Result
1 ORA 1 1
0 ORA 1 1
1 ORA 0 1
0 ORA 0 0

So basically, whenever A or the ORA value’s bit has 1, the resulting bit is also 1.

Page 32 of 65



EOR - Exclusive OR (also known as XOR)

If two 1 come together, the result will be false. And if two 0 come together, the result will be
also false. In other words, if the compared bits are different, you get 1 as a result. Look at this
truth table:

Compared bit EOR operation Result
1 EOR 11 0
0 EOR 1 1
1 EOR 0 1
0 EOR 0 0
Example:

; A = 1001 1001

; EOR 1111 0000
A = 0110 1001

After the EOR, the result will be stored back to A.
There are also opcodes to set bits directly:

TSB - Test and Set Bit

TRB - Test and Reset Bit

These opcodes takes the value in A, and (re)sets the specified bits of a RAM addresses using
it. Here is an example:

1111 0010

As you can see, the first one saves more time and lines.

TRB works exactly the opposite:

LDA #$01 ;A = 0000 0001. $7E0010 1111 1111

TRB $10 ;610 = 1111 111

Page 33 of 65



This is the same as:

1111 1111

; bit 0 to O.
;Store back into $7E0010. $10 = 1111 1110

As you can see, thanks to TRB you don’t even have to convert a number to its inverse value
(#SFE in this case) to reset a certain bit.

There is also an opcode which is almost the same as AND. It’s used to do comparisons.

BIT - BIt Test

Basically it is a logical AND. It does affect the processor flags, except the result is NOT
stored into A. See Processor Flags chapter for explanation about the processor flags. Here is
an example:

More in-depth explanation about BIT can be found later in this tutorial.

So what can bitwise operations be used for? There are many uses of bitwise operations in
SNES games. The most common usages I have seen so far is:

EOR:

- For example, flipping a sprite’s direction bit. Doing EOR #$01 to a sprite’s direction
address would cause it to switch directions, because the current direction flag has been
changed from its current value to the opposite, i.e. 0 to 1, or 1 to 0.

- Getting a negative speed value. If one wants the negative value of a speed, one can do
EOR #8$FF to flip all the bits, causing the speed value to be inversed.

ORA:

- Compare a series of addresses to see if they’re set or not. Suppose the following code:

This code basically loads the value of address $00 into A, then ORs it with RAM $01, its
result being stored in A. Then the same happens with $02, and so on. If the result is $00, the
branch is taken. This means that if every address has the value $00, the branch is taken. It’s
better than doing LDA $00, BEQ Clear, LDA $01, BEQ Clear, and so on. You compare all
the addresses in one fell swoop.

Page 34 of 65



AND:

Set a certain bit of an address. For example, you have a RAM address which keeps
track of the player status. It contains both the player’s direction and its powerup status,
big or small. If you want to only change the powerup status, you use ORA (or even
better, TSB) to set its powerup status only. If you used LDA and STA, you would also
inadvertently overwrite the direction status of the player.

AND can be used to mask out certain bits. Let’s take the player powerup status +
direction example again. You can use AND with a certain bit and check if the result is
1. If it’s 1, that bit is set. Example:

In this case, if bit 1 is set, the branch is taken. This really only checks for the bit. The value of
the address can be anything, from #$FF to #$23, only bit 1 matters in this scenario. As long as
that one specific bit is set, branch.

BIT:

The SNES controller input is bitwise. All button presses are stored as bits rather than
bytes. Using BIT, you can test if a certain button is pressed (but without affecting the
accumulator). You might be asking though, why BIT rather than AND? For that,
please see the “in-depth look at some opcodes” chapter. BIT has a feature which
distinguishes it from a regular AND, involving processor flags.

Page 35 of 65



Chapter 16: Affecting Processor Flags manually

The SNES has the opcodes REP and SEP. What are they, and what do they do, actually? They
affect the processor flags, which affects the behaviour of the SNES. There are 8 processor
flags stored in the Processor Flag Register as a single byte:

Hative HMode

Carry
Result Zero
Disabled
Decimal,
8-bit, @
8-bit, 8 =
Overflow
Hegative

IR Disable

Decimal Hode

Index Register Select
Hemory/Accumulator Select
Overflow

Hegative

e e e R e e e B e B

e O e e

(For in-depth explanations of the flags please refer to chapter 18)

REP - REset Processor status
SEP - Set Processor status

SEP sets the selected bits to 1 while REP resets the selected bits to 0. They work pretty much
like TSB and TRB from the previous chapter, except these opcodes affect the SNES processor
flags.

In the image, m and x are described as Index Register/Memory/Accumulator select. The index
register is in fact the x and y 8- or 16-bit mode register, while the memory/accumulator select

is the same, just for the accumulator.

SEP works as following:

The uppercased letters are the activated processor flags. This code sets the negative flag.

REP works as following:

;= 0000 1000

In the beginning, the decimal mode was enabled, and the negative flag was set, but after REP

Page 36 of 65



#308, the decimal mode flag got disabled, but the negative flag still is set.
What is e doing up there in the image, you ask?

It is the ‘hidden’ Emulation Mode. When it is set, SNES basically acts like 6502 (NES CPU),
which is far more limited. While in emulation mode, the accumulator, X and Y register are
forced to be 8-bit and one of the processor flag is used to indicate BRK. It also uses different
vectors for interrupt. You can’t set the emulation mode using REP and SEP. Emulation mode
is basically an ‘improved’ 6502 processor emulation.

You can access the Emulation Mode by using SEC XCE, and leave it using CLC XCE. By
default, SNES starts up in emulation mode.

Page 37 of 65



Chapter 17: Moving chunks of data

There are 2 opcodes to transfer a whole bunch of data to an address:

MVP - MoVe block Positive
MVN - MoVe block Negative

MVN is the easiest to use. MVP and MVN practically do a mass amount of LDA and STA to
some RAM addresses. You can’t move data to ROM, because, well, ROM is read-only.

To use MVN, make sure AXY = 16-bit and use PHB and PLB, so the code looks like this:

A 1s used for the amount of bytes to transfer.
X is used for the high and the low bytes of the source.
Y is used for the high and the low bytes of the destination address.

You must input MVN for xkas as this: MVN $xxxx, which the first byte (boldened) is the
source bank, and the second byte for the destination bank.

MVN transfers the amount of bytes specified in A. The start address of source is in X, start
address of destination in Y. X and Y increase for each byte that is being transferred, A
decreases. When A hits $SFFFF, the transfer is done

Let’s take this as an example:

A = $000F ; (nummer 15, but it’s 16 bytes because the size is defined as A+1)
X =$8908
Y =$A000

Using “MVN $1F7F”, this will transfer 16 bytes, from ROM $1F8908, to RAM $7FA000.
Useful when you want to load a HDMA table in RAM without a massive amount of LDAs
and STAs, including indexing with additional loops. MVP is more complicated. Explanation
is in the next page.

Oh yeah, of course you simply set A, X and Y using LDA #$000F, LDX #$8908, etc. in
16-bit AXY mode.

Page 38 of 65



You must input MVP for xkas as this: MVP $xxxx, where the first byte (boldened) is the
source bank, and the second byte is the destination bank. The X register serves as the end of

the source table, as opposed to MVN. The Y register serves as the end of the destination, as
opposed to MVN.

Let’s take this as an example:

A =$000F
X =$8908
Y =$A000

Using “MVP $1F7F”, this will transfer 16 bytes, from ROM $1F8908 minus the value in A,
to RAM $7FA000 minus the value in A. This one is much more complicated, and you might
want to avoid using it. Just a personal recommendation.

While MVP is transferring data, X and Y decrease (as opposed to MVN where they increase).

This is why you have to specify the source/destination’s end address instead of the begin
address.

Page 39 of 65



Chapter 18: Indexing with X and Y

Indexing is the act of accessing a table of data from a certain offset, that offset being
determined by an indexer. X and Y are important in indexing. In fact, they can’t be missed,
because their main purpose is indexing after all. I’ll show you a piece of code and explain it
afterwards:

This is where tables start to play an important role, and here’s a quick crash course on them.

Tables are a sequence of bytes. They are pure values mostly used in conditional cases. They
can also contain various data such as positions of objects, level data, speed data, anything! In
this case, the bytes are a “byte”, not “word” or “long”, hence “db”: direct byte. The table in
this example serves no other purpose than demonstrating indexing. In this case, the table is
located somewhere inside the ROM. Tables are preceded by a label so that you can refer to it
easily within your code.

Now, when you assume that $7E0012 holds the value $03, Y will be loaded with $03
(Because we used LDY). What happens next?

The code will load a value from the table into A. Let’s assume that this table is located at
ROM $1F:B000. Basically, this does LDA $1FB000 PLUS the value in Y, so this code
actually does LDA $B003 in the end (implicitly). The $1FB003 here is the offset of the data
loaded. $1F:B003’s value is $38 in the table in this case, so this actually loads $38 in A.

Indexing is quite useful when you don’t want to write very repetitive instructions all the time.
Indexing can be performed with X too, of course. X and Y behave exactly the same, after all.

Tables have very practical applications in SNES games. You can, for example, store text data

in tables. Or level data. Or palette data. You can program the game to grab the values from the
table using a loop, rather than doing repeated LDAs and STAs.

Page 40 of 65



Chapter 19: Transfer

There are lots of transfer opcodes, and their process is extremely simple (most of them
anyway):

What they do is copy a value from a register to another register. See this example:

This will copy the contents of the A register, into the Y register.

There are these couple of opcodes which do the same copy progress. I will not name them
because I believe the opcodes themselves are self-explanatory:

TAX - This copies the contents of A into X. This opcode does not call the tax collector.
TAY - This opcode copies the contents of A into Y

TXA - This opcode copies the contents of X into A
TXY - This opcode copies the contents of X into Y

TYA - This opcode copies the contents of Y into A
TYX - This opcode copies the contents of Y into X

Here are some special transfer instructions, which affect the other general registers:

TCD - Transfer the 16-bit value in A, to the direct page register, regardless of A being in the
16-bit mode or not.

TDC - Transfer the 16-bit value in the direct page register to the A register, regardless of A

being in the 16-bit mode or not.

TCS - Transfers the 16-bit value in A to the stack pointer.
TSC - Transfers the 16-bit stack pointer to the A register.

TXS - Transfers the 16-bit value in X to the stack pointer.
TSX - Transfers the 16-bit stack pointer to the X register.

Page 41 of 65



TAX, TAY, TXA, TXY, TYA, TYX also work when A, or XY are in 16-bit mode:

X, Y are all 16-bit mo«

the number S
) X has now the number $1337

If X wasn’t 16-bit mode, it would only copy over the $37 part over to X, and the high byte of
X would stay cleared.

Earlier in this tutorial I’ve mentioned that A is in reality always 16-bits long. So if you load
something into A in 8-bit mode, the high byte always stays the same. Take the following
example:

it mode.
n the number

As you can see, the high byte of A never gets touched simply because A is 8-bit.

Page 42 of 65



Chapter 20: Miscellaneous Opcodes

In this chapter I will describe misc. opcodes which don’t really require complex explanations.

NOP - No OPeration
This opcode will do absolutely NOTHING. It is often used to disable existing opcodes in a
ROM, or used to give time for the math hardware registers to do their work.

SEI - SEt Interrupt disable flag
This sets the interrupt disable flag in the processor flags. In other words, this disables
interrupts

SEC - SEt Carry flag:
It basically writes 1 to the Carry Flag.

SED - SEt Decimal flag:
Sets the decimal flag by writing 1 to the decimal flag

CLC - CLear Carry flag:
It basically writes O to the Carry Flag.

CLD - CLear Decimal flag
Clears the decimal flag by writing 0 to the decimal flag.

CLI - CLear Interrupt disable flag
This clears the interrupt disable flag in the processor flags. In other words, this enables
interrupts.

CLV - CLear oVerflow flag
This clears the overflow flag of the processor flags.

XBA - eXchange B and A:
It swaps the high and the low bytes of the (16-bit) A register regardless of the register size.
Example:

WAI - WALIt for interrupt:
This halts the whole program, until an interrupt occurs, which is either NMI or IRQ.

Page 43 of 65



Chapter 21: Stack; Push and Pull e

The stack holds data you “push” onto it (either explicitly or implicitly). Imagine the stack as a
stack of books in a thin, long crate, and you can only add books (push) from above and take
books from above (pull/pop). Imagine the stack as something like this:

]

The blue boxes are books (bytes), and they can hold any value in it. When you push
something on the stack...

JE <
J
i

A value is added after the last value. And when you pull from the stack...

1-1
]

%

You cannot push/pull stuff at the bottom, since it is ‘closed’. Basically, “last in, first out.”

Page 44 of 65



There are opcodes to push the current value inside the A, X or Y registers onto the stack:

PHA - PusH A onto stack
PHX - PusH X onto stack
PHY - PusH Y onto stack

There are also opcodes to pull a value from the stack into the A, X or Y registers:

PLA - Pull into A from stack
PLX - Pull into X from stack
PLY - PulL into Y from stack

Here is an example code, think of something like: X needs to stay at the value $19, but you
really have to use X for something else. How would one do that? You use PHX to preserve
the value in X in the stack, before you use an instruction which modifies the contents of X:

value = #3519

=POINT OF ADVICE-

The registers A, X and Y do not have a separate stack. There is only one stack, specified by
the stack pointer register.

As you push a value to the stack, it gets pushed to the location where the stack pointer
register points to. After each push, the stack pointer decreases, so the bytes are pushed
backwards. They overwrite the RAM address’ contents. Here is an example of how the stack
works from the RAM’s point of view:

When you pull something from the stack, it gets pulled from the location of the stack pointer.
After each pull, the stack pointer increases. The bytes are pulled back into a register. You do
not extract the byte literally out of the RAM. You just copy the byte to the register you pull it
into. The byte in the stack does not reset or anything. It remains the same.

The stack doesn’t have a defined size. Instead, you just reserve an area of RAM for the stack.
The reason it doesn’t have a defined size is because as long as you keep pushing, the stack
pointer keeps decreasing. If you push too many values, you might accidentally overwrite
RAM addresses with actual purposes.

Page 45 of 65



=-POIMT OF ADVICE-

16-bit stack operations are possible as well. Instead of pushing and pulling one byte, you

work with two bytes instead. For example, in 16-bit A mode, PHA pushes a 16-bit number
onto the stack, not an 8-bit number. Same with pull - you’ll pull a 16-bit number from the
stack into A using PLA.

There are also other push and pull commands, which are not affected by 8 or 16-bit mode:

PHB - PusH Bank register onto stack
Pushes the 8-bit data bank register onto the stack.

PLB - PulL Bank register from stack
Pulls the 8-bit value into the data bank register from the stack.

PHD - PusH Direct page register onto stack
Pushes the 16-bit direct page register onto the stack.

PLD - PulL Direct page register from stack
Pulls the 16-bit value into the direct page register.

PHP - PusH Processor flags onto stack
Pushes the 8-bit current processor flags’ status onto the stack.

PLP - PulL Processor flags from stack
Pulls the 8-bit value into the processor flags’ status from the stack.

PHK - Push current program bank onto stack
Pushes the 8-bit current program bank onto the stack (the bank byte of the program counter).
There is no pull version of this.

PEA $XXXX - Push Effective Address
Pushes a specified 16-bit value onto the stack

PEI ($XX) - Push Effective Indirect address
Pushes the 16-bit value at the specified RAM address onto the stack.

PER label - Push program counter relative

Pushes the 16-bit value at a specified label. The location (the parameter of the opcode) is
relative to this instruction once the code has been assembled.

Page 46 of 65



Chapter 22: In-depth look at some opcodes

By now, the basics of ASM should be clear, but so far the opcodes have been explained in
basic terms. Some opcodes do a lot more behind the scenes for them to function properly.

First of all: BEQ and BNE. BEQ, in fact, actually branches if the result of the last operation is
zero. BNE branches if the result of the last operation is NOT zero. The most common usage is
CMP then BEQ/BNE. CMP is actually a subtraction with register A, without changing A. To
make it more clear, assume that RAM $7E0019 contains the value 33:

can put mi

Because subtracting $33 with $33 resulted in zero, CMP automatically set the zero flag,
causing BEQ to take the branch. There’s an advantage to this fact, which is explained in the
tips and tricks chapter.

About JSR and JSL, and RTS and RTL:

Imagine that there is a JSR opcode located at $8000, and there is an LDA at $8003, and RTS
at $B000. A JSR instruction is 3 bytes long (JSR $xxxx). So we have this:

$8000 JSR $B000
$8003 LDA #3501

$B000 RTS

Now, what JSR does is, pushing the next instruction’s location - $0001 onto the stack. This
means, that the value $8002 is pushed on the stack. Then JSR jumps to the specified address.
What RTS does, is pulling that $8002 from the stack and adding $0001 to it, and storing it
into the program counter register, causing the program to jump back to the instruction after
that JSR.

JSL and RTL work the same way, except these push and pull 24-bit addresses. JSL pushes the
long address - 1 onto the stack and jumps to the specified address, and RTL pulls the long
address +1 onto the stack and jump to it.

Page 47 of 65



The following is about BIT $XX. Remember that BIT does a logical AND without storing the
resulting value anywhere.

However, here is another purpose to BIT; It can affect the negative and overflow flag. The
accumulator can have any value. Here’s an example usaage of BIT:

;Bit test $7E0004

If $7E0004’s value was $80 (1000 0000), the negative flag would be set and the overflow flag
would be clear. It’s useful to check really fast if the value of an address is negative.

If $7E0004’s value was $40 (0100 0000), the negative flag would be clear and the overflow
flag would be set. Useful to check if bit 6 is set.

If $7E0004’s value was $CO (1100 0000), the negative flag would be set and the overflow
flag would be set.

Coincidentally enough, the bits for negative (bit 7) and overflow (bit 6) correspond to the bits
in the processor flag register: nvmxdizc.

When you are performing a BIT operation on a RAM address, the N and V flags will be set or
cleared, regardless of the value in the accumulator. The zero flag depends on the
accumulator’s value and the RAM address’ value. So, BIT with a RAM address does both
AND, and an inevitable check of bits 7 and 6 of the RAM address.

Page 48 of 65



Chapter 23: In-depth look into Processor Flags

Remember chapter 15, where the use of SEP and REP has been explained? Those opcodes
affect the processor flags. There are 2 different modes of processor flags: Flags in Native
mode and flags in Emulation mode (XCE). We will focus on the native mode. The flags go
like the following: NVMXDIZC. These are the flags for the native mode:

The N flag:
It is the negative flag. It will get set to 1 when the last operation’s value is between $80-$FF.

The V flag:

Only four opcodes can affect the V flag, excluding REP, SEP and PLP. Those four opcodes
are: CLV, ADC, SBC and BIT. See their description to learn when they set/clear the flag. It
doesn’t do really anything fancy. You can use branches looking at the V flag and that’s about
it.

The M flag:
This flag affects the register width of the A register. It stands for Memory/Accumulator
select. When it is set to 1, A = 8-bit. When it is set to 0, A = 16-bit.

The X flag:
This flag affects the register width of the X and Y register. It stands for Index Register select.
When itis setto 1, X and Y = 8-bit. When it is set to 0, X and Y = 16-bit.

The D flag:

Only two opcodes can affect the D flag, with the exception of REP, SEP and PLP:

SED and CLD. The decimal mode won’t be covered in this tutorial, as it’s rarely used and
incorrectly emulated in most emulators.

The I flag:
This is the IRQ disable flag. When it is set to 1, IRQ will be disabled. Otherwise it will not
be disabled (of course).

The Z flag:
This is the zero flag. When the result of any operation is zero ($00), this flag will be set.

The C flag:

This is the carry flag. This flag is set on unsigned overflow for ADC ($00 roll over to $FF) or
when underflow for SBC does not happen

Page 49 of 65



Chapter 24: In-depth look into Addressing modes

Chapter 5 covered basic addressing modes. However, there are MUCH more than that. In this
chapter all of them will be covered as detailed as possible. Keep in mind that only, and only
the A register can pull off the () and [ ] stuff covered in this chapter. Remember that indirect
(long) addresses are little-endian too! Keep in mind that register widths does not affect the
way the indirect addresses are handled.

Direct Indirect, : Direct stands for Direct Page, Indirect stands for... indirect. A ()
covering the parameter means that the address is 16-bit indirect. Here is an example of how an
indirect address works in this case:

A ($00)

Assume that the values in $7E0000 + $7E0001 are $8900. You might think that LDA ($00)
loads #$8900 into A. However, it doesn’t work that way. It loads the value in address $8900
into A. Why is the address 16-bit? Because the (). The bank of the indirect address depends
on the data bank register. Eventually, the opcode gets executed as if it were LDA $8900.

Direct Indexed with X Indirect, : Same concept as Direct Indirect, except the
address you specify in the opcode is indexed with the X register. Example:

The values in $7E0000 + $7E0001 are $8900.
The values in $7E0002 + $7E0003 are $9337.
Thanks to X, the opcode is read as LDA ($02), which loads the value in $9337.

Direct Indirect Indexed with Y, : Same concept as Direct Indirect, but the indirect
value is indexed with Y. Example:

The values in $7E0000 + $7E0001 are $8900.
Thanks to the Y index, the loaded address is $8905. So this instruction loads the value in the
absolute address $8905.

Absolute Indirect, : Same concept as Direct Indirect, except the RAM address you
specify in the opcode has 4 digits instead of 2.

Absolute Indexed with X Indirect, : Same concept as Direct Indexed with X
Indirect, except the RAM address you specify in the opcode has 4 digits instead of 2.

Page 50 of 65



Direct Indirect Long, : Same concept as Direct Indirect. But those [ ] mean that the
indirect address is 24-bits long. Here is an example of how [$XX] works:

Assume that the values in $7E0000 + $7E0001 + $7E0002 are $028900. This basically loads
the value from $028900 into A.

Direct Indirect Indexed Long with Y, : Same concept as Direct Indirect Indexed
with Y, except the indirect address is 24-bits.

Direct Indexed with X, : The address is indexed with X. The address is from the direct
page.

Direct Indexed with Y, : Same as above, except this one is indexed with Y.

Absolute Indexed with X, : Same as Direct Indexed with X, except the address

specified here is 16-bit.
Absolute Indexed with Y, : Same as above, except this one is indexed with Y.
Absolute Long Indexed with X, : Same as Absolute/Direct Indexed with X,

except this one’s address must be 24-bits. No, there is no Absolute Long Indexed with Y. It
does not exist.

Actually, there is one more index... The stack pointer.
Stack Relative, : It’s actually read as $Stack Relative,s. Not $Direct Page,s. The $XX

doesn’t really have a meaning except the stack pointer ‘position’. We will work with LDA
here to keep things simple. Simply put:

slot in the stack, into A.

You see, the s means “indexed with the stack pointer”. And since the stack pointer keeps
altering as values get pushed and pulled, it is a bit tricky to use.

Page 51 of 65



Stack Relative Indirect Indexed with Y, : This is one of the rarely used addressing
modes. It is hard to explain, so you’ll have to do with an explanation:

Of course, direct indirect addressing mode () will behave like an absolute addressing mode.
This means the bank is determined by the data bank register.

Page 52 of 65



Chapter 25: Indirect pointers to routines

The previous chapter discussed addressing modes which can read indirect values. This chapter
is dedicated to indirect pointers used in conjunction with JSR.

JSR can have the following addressing mode: JSR ($addr,x). If you want to execute a routine
depending on a RAM address’ value, you can avoid a massive amount of comparisons by
making use of this opcode. Basically you have a pointer table:

Pointers:

These are just example pointers. They generally look like that; a list of labels. To access the
pointer tables with a JSR ($addr,x), you need write code similar to the following:

le RAM address)

Basically, ASL A and TAX serve as an index to the pointer table. ASL A multiplies the
loaded value by 2, so the code can index the table properly (“dw” means that it’s a word
value, in other words, 2 bytes). TAX transfers A to X to use as an index. So if $00 had the
value $01, register X would be $02 because of the multiplication. As an index to the pointers
table above, it would index at dw Label2

Page 53 of 65



In short:

When $7E0000 has the value $00, the JSR will execute code in Labell in the current bank.
When $7E0000 has the value $01, the JSR will execute code in Label2 in the current bank.
When $7E0000 has the value $02, the JSR will execute code in Label3 in the current bank.
When $7E0000 has the value $03, the JSR will execute code in Label4 in the current bank.

Page 54 of 65



Chapter 26: Machine Cycles

The 65c¢816 processes the opcodes so the processor actually does stuff. The time it takes to
execute the instructions is called “Machine Cycles”. The less machine cycles, the less
slowdown the game suffers from. To avoid slowdown, you need to write efficient code. Here
is an example:

Inefficient:

LDA #500

STA $7E0000

To make this code more efficient, you can reduce the 2™ instruction’s size to direct page
instead of long address:

Efficient:

You can even make this a single instruction:

Extremely efficient:

You don’t need to know how long a machine cycles takes ‘in real life’. Just try to keep them
at a minimum, but for the sake of learning ASM if you think STA $7E0000 is more simple
compared to STZ $00, so be it.

Please see the “Useful links” chapter to find the list of opcodes and their machine cycles.

Page 55 of 65



Chapter 27: Useless opcodes

There are 3 useless opcodes in total, which you normally will never have to use:

STP: Stop the clock.

It will stall the SNES, until you hit reset. It is like a force crash, but this freezes the game
instead of crashing it. One of its only possible uses is to make the user soft- or hard-reset the
game. It also does lower the power consumption of the SNES, if the couple of cents it'll shave
off your power bill means that much to you. Thanks smkdan for the final piece of information.

BRK #38XX: Software Break:
Break pushes a bunch of stuff onto the stack, then automatically jumps to vector $SFFEG6 in the
ROM. It is more of a debugging thing, probably no game uses it. Here is the stuff it pushes in
order:

* Push the 24-bit address of the instruction after BRK #$xx onto the stack.

* Push the processor flags onto the stack (as one byte).

Furthermore (in no particular order):
* The interrupt disable flag is set.
* The decimal mode flag is cleared.
* The program bank register is cleared to zero.
* The program counter is loaded from the break vector at SFFE6-SFFE7.

=POIMT OF ADVICE=-

Useless to most, BRK makes debuggers snap (if the emulators are made properly), so they
can be useful for that. You could also program the break vector at SFFE6-$SFFE7 to do

meaningful things when the program crashes. In fact, on SMW<Central, p4plus2 released a
patch which does exactly this; it shows debug information about the crash. It’s called “BRK
exception handler”.

The parameter is not used for anything in particular, but if you write a meaningful ‘catch’ to
the BRK, you could probably read what the value of the BRK was supposed to be, and do
certain things depending on the value.

COP #3XX: Coprocessor Empowerment:
This opcode causes a software interrupt, pushes a bunch of stuff onto the stack, and the
program counter is loaded from the COP vector at SFFF4-$FFF5. It does the following (in
native mode):

* Push the 24-bit address of the instruction after COP #$xx onto the stack.

* Push the processor flags onto the stack (as one byte).

Furthermore:
* The interrupt status flag is set.
* The program bank register is cleared to zero.
* The PC is loaded with the COP hardware vector.
* The decimal flag is cleared after COP is executed.

Page 56 of 65



Chapter 28: Tips and tricks

This chapter features some tips and tricks which can be done with opcodes.

Tip 1: Amount of bytes used by an instruction

Each opcode is 1 byte. Then the byte is followed by a 0-3 bytes parameter (depending on the
opcode and addressing mode). This means that the maximum amount of bytes an instruction
in SNES can use, is four bytes. Here is a very small example on how LDA’s bytes look like:

There is a way to know how long an opcode is?

An instruction without a hexadecimal parameter is only 1 byte, like INC A or TAX. An
instruction with an 8-bit parameter is 2 bytes, like LDA #$00. An instruction with a 16-bit
parameter is 3 bytes, like LDA $0000. An instruction with a 24-bit parameter is 4 bytes, like
LDA $000000. It doesn’t matter if the addressing mode is indexed, direct indirect or
something else. It all depends on the length of the $-value.

Tip 2: Pseudo 16-bit math (ADC & SBC)

It is possible to perform 16-bit math without actually switching to 16-bit mode. This is
actually quite useful in cases where the two involved numbers are not adjacent to each other.
Here is an example of pseudo 16-bit math:

You remember how the carry flag gets set when the addition wraps from $FF-$00? This here
is a practical example This code increases the ’16-bit counter’ by $20, while the counter’s
value was $F0. This resulted in $0110, in 2 separate non-adjacent RAM addresses.

You can do the same thing with SBC. Do SEC and SBC with one address, and SBC #$00 with
another.

Page 57 of 65



Tip 3: Copying tables to RAM (Looping)

What if you want to copy a table to another location, and you don’t feel like using MVP/MVN
for some reason? A massive amount of LDA STA isn’t going to do it since it will slowdown
the game (likely), waste space (definitely), AND waste YOUR time coding it (obviously). So
for this, we will use a loop. I use the X register for this but you can use the Y register too. The
X register holds the amount of loops the code will do, while the A register will hold the values
to copy to another location:

is.

Table: db $01,502,503,50 ;Table with random values.

This code takes the values in the table, and copies them to RAM addresses
$7E0100-$7E0105. But the first value is put in $7E0105, and the last in $7E0100. Why?
Because the index starts with $05 (LDX #$05). Don’t worry though, you don’t have to reverse
the table since all the bytes will be put in the RAM in order. We use BPL instead of CMP
BNE, because BPL branches if the value is between $00-$7F. X starts at $05 and decreases. If
X is $00, and we use DEX, X will become $FF, which is a negative number. This allows us to
break the loop. Keep in mind that the code works with loop counts up to value $7F. If X
initially exceeds $7F, the loop will immediately break after transferring a whopping amount
of 1 byte!

Now if the table is MUCH MUCH bigger, you might want to use MVP/MVN, or DMA (<
recommended) for efficient coding. If the index has to be over $7F, you can use 16-bit
indexes (REP #$10/SEP #$10). The limit will be $7FFF then.

Tip 4: Increasing/Decreasing the index registers by a huge amount
Increasing and decreasing A by a certain amount is easy because of ADC/SBC and all.
However, such instructions aren’t directly meant to be used for X and Y. If you want to
increase/decrease X/Y by a small amount, you’d use INX/DEX/INY/DEY. If you want to
increase X/Y by a great amount, you’d do the following:

As you can see, you transfer X to A, add #$42 to it, and transfer A back to X. Same example
could be applied to the Y equivalent (TYA TAY). It requires very little effort to do this, and is
definitely better than a huge amount of INX instead. Also, if you want to decrease by a huge
value, you’d use SEC and SBC instead just like the basics.

Page 58 of 65



Tip S: Unlimited branching reach

In some cases, you’ll have to branch much further than -128/127 bytes. The SNES branch
opcodes do not support this (except BRL, but it isn’t conditional). However, with the smart
use of JML and the branch opcodes, you can easily overcome this problem. Imagine the
following scenario:

130 lines of code definitely would exceed 128 bytes (since we’re branching forward). While
trying to assemble this, the assembler will throw an error at your face of course. The code
branches if $7E0000 has the value $05. So, how do we fix this? We will insert a JML in the
code, and make the code reach the JML if $7E0000 has the value $05. In the end, we get this:

ch the JML. If not 05, continue

Basically, this way we have extended our branch and can jump anywhere in the bank now!
The continue label is there so we can skip the JML if we have to. This works with almost
every branch opcode! For example, here’s one with BVS/BVC:

As you can see, | am turning the existing branch into the opposite version of it (BEQ — BNE,
BVS — BVC, and so on) and add a JML after it, which gets followed by a Continue label.
That’s the basic structure of a limitless branch. Of course, if BRA gets out of range you’d
simply replace it with JMP/JML or something, since BRA doesn’t do comparison.

Page 59 of 65



Tip 6: Faster comparison and branching with BEQ and BNE

Faster comparison makes use of processor flags effectively, because branches actually depend
on the processor flags. BEQ branches if the z flag is set, BNE branches if the z flag is clear,
BCC branches if the ¢ flag is clear, etc.

Often, if the result of any operation is zero ($00 or $0000), the zero flag gets set. For
example, if you do LDA #$00, the zero flag is set. As long as a zero gets involved in the end.
How can this be useful in branching?

Well, assume that RAM address $7E0001 contains the number $00. Then the following piece
of code:

;Branch if S$7E0001 is $00

This code branches if $7E0000 has the number $00. CMP sets the zero flag here because
$00-$00 = $00 (remember, CMP does a subtraction).

However, the zero flag already gets set when LDA gets executed, because $7E0001 contains

the number $00. There’s no need for CMP #$00. BEQ branches if zero flag is set. So, above
code can be simplified as this:

;Branch if $7E0001 is NOT $00

But this can be simplified too. If $7E0001 is NOT $00, and you perform an LDA using that
address, the zero flag gets cleared. BNE branches if zero flag is cleared, so there’s no point in
CMP #$00. Above code can be simplified as:

LDA $7E0001

BNE Branch

The code branches if $7E0001 is NOT $00, meaning it branches when the value is between
$01 and $FF.

Page 60 of 65



Tip 7: Pseudo 16-bit math (INC & DEC)

You can also perform pseudo-16 bit math with INC addr and DEC addr, using the zero flag
wisely. It is useful for increments/decrements by one. Here’s an example code:

Here, $7E0000 contains the 16-bit value $OFFF for example. Dividing it in 8-bit blocks, it
would be: $7E0000 holds value $FF, $7E0001 holds value $SOF.

BNE Branches if $7E0000 doesn’t hold $00 after the INC. In this case, it doesn’t branch. So:
$FF + $01 makes $00, with the zero flag clear. The branch therefore doesn’t get taken, and
INC $01 gets executed. $OF becomes $10. Final result becomes: $7E0000 holds value $00,
$7E0001 holds value $10. In 16-bit that would be $1000!

If you want to do this with decreasing values, you’d replace INC with DEC.

Page 61 of 65



Chapter 29: Programming cautions -«

When you’re coding, you will have to keep an eye out on (common) mistakes.

CAUTION #1:

Don’t try to load an 8-bit value into AXY when AXY is in 16-bit mode

Consequence(s):

The game will most-likely crash by interpreting by substituting the missing 2nd half of the
16-bit parameter with the next opcode, making the next opcode’s parameter interpret as an
undesirable opcode.

Fixing the issue:

Either load a 16-bit value into AXY, or change AXY to 8-bit.

CAUTION #2:

Don’t try to load a 16-bit value into AXY when AXY is in 8-bit mode
Consequence(s):

The game will most-likely crash because the excess 2nd half of the 16-bit parameter is
interpreted as an undesirable opcode.

Fixing the issue:

Either load an 8-bit value into X or Y, or change AXY to 16-bit.

CAUTION #3:

When creating loops, don’t make a small mistake which results in an infinite loop (a loop
which doesn’t exit).

Consequence(s):

The game will lock up; the only way to exit is to hit reset.

Fixing the issue:

Check at the end of the loop (often a comparison) to see why it doesn’t allow the loop to exit.
You might need a debugger for this.

CAUTION #4:

Don’t make absurdly slow loops (especially ones which run every frame). Absurdly slow
meaning: loop which runs over 9000 times which executes 9999 lines of slow code.
Consequence(s):

It might slow down your game which is inconvenient.

Fixing the issue:

Optimize the code within the loop, or process the loop at such a moment that the player won’t
notice slowdown (for example: black screens).

CAUTION #5:

Make sure your code doesn’t cross bank-boundaries ($XX:FFFF — $XX:0000) inside the
ROM.

Consequence(s):

The SNES would read bogus values you will never predict, and most-likely crash.

Fixing the issue:

The code should remain within a bank. If it isn’t possible, use extra code which checks for
bank boundaries and reads data accordingly. Another option is making wise use of JSLs and
JMLs when executable code exceeds bank boundaries.

Page 62 of 65



CAUTION #6:

Make sure your branch doesn’t get out of range.

Consequence(s):

Assembler will throw an error. If it doesn’t, then the assembler is bad, and the branch might
go to the opposite direction by an unknown amount when the code is running, which will
likely result in a crash/infinite loops/other unwanted effects.

Fixing the issue:

See programming tip #5 in previous chapter.

Page 63 of 65



Chapter 30: Useful links

This chapter will list a bunch of useful links for additional ASM information. They aren’t
necessarily restricted to ASM but can also include SNES hardware stuff.

http://wiki.superfamicom.org/
Super Nintendo Development Wiki - Particularly, the 65c816 reference page. This wiki
basically has everything you need in order to start developing things for the SNES.

https://en.wikibooks.org/wiki/Super NES_Programming
Super NES Programming Wiki - A website succeeded by the website above, meaning this

website is kind of... outdated at this point. But I put it here anyway because it kind of helped
me out with various ASM things regardless.

http://media.smwcentral.net/Ersanio/SMW Cstuff/Advanced%20documentation/ASM Works

hop.htm

SMWCentral’s IRC ASM Workshop - A workshop held on SMWCentral’s official IRC
teaching various ASM things. You might want to save this file locally in case it ever gets
removed for some reason.

http://acmlm.kafuka.org/board/thread.php?id=99
Sukasa’s ASM tutorial - This is an ASM tutorial within a Super Mario World context.

What’s great about this tutorial is that it actually works with tangible things; there are
examples of how to set Mario’s powerup status. It is also very short and to the point (unlike
this tutorial).

http://media.smwcentral.net/Ersanio/SMW Cstuff/Advanced%20documentation/658 16REF.H
LP

65c816 Reference - An 65c816 reference help file which shows a list of opcodes and what
processor flags they affect. Might not work on the newest versions of Windows. You might
want to save this file locally in case it ever gets removed for some reason. (Maybe I’ll make a
HTML version of this in the future)

http://media.smwcentral.net/Ersanio/SMW Cstuff/Advanced%20documentation/658 1 6info.txt
65¢816 Primer - A very technical document about the 65¢816. You might want to save this
file locally in case it ever gets removed for some reason.

http://media.smwcentral.net/Ersanio/SMW Cstuff/Advanced%20documentation/SNES%20De
v%20Manual%20(searchable%20text%20layer).zip

SNES Development Manual - Nintendo’s official SNES Development manual in 2 PDFs
detailing pretty much everything about the SNES and how the console works. You might want
to save this file locally in case it ever gets removed for some reason.

http://www.defence-force.org/computing/oric/coding/annexe_2/index.htm
Introduction to 65¢016 - A small page comparing the 65¢816 with the 6502 (the processor
used in the NES), as well as a reference of opcodes.

Page 64 of 65



Chapter 31: Final notes

This tutorial teaches you most of the things you should know about ASM. But to truly master
ASM, there’s only one obvious solution: practice. Only reading tutorials won’t really help;
you’ll have to get used to ASM.

An important part of ASM is thinking logically: at first you will be able to load and store
values only, then you will advance to conditional operations. Eventually, you will start to
think logically; basically you will ‘emulate ASM in your mind’ as in, imagining the SNES
behaviour while coding. This is useful for writing effective code while knowing what the
eventual outcome will be.

Another important part is not being afraid to try out new opcodes. It’s not like you can’t undo
code in your text editor.

Learning ASM takes a long time. I’ve started learning ASM before I even knew what
programming meant. SMWCentral was the place where [ started to learn ASM, because that
board lacked people who knew ASM at that time. People like Bio and GhettoY outh inspired
me, due to their amazing Super Mario World ASM hacks.

Don’t get demotivated just because it takes months or maybe years to master ASM, or
because you didn’t really learn anything from this tutorial. If you learn ASM, you will benefit
from the results and eventually you will be able to hack almost any game. You will gain
programming experience too. You could look into programming in general and focus on
programming like me. It has been over 3 years and I still don’t consider myself as an ASM
master (yet), but [ know almost everything about ASM now. The next thing waiting for me is
advanced SNES development but that’s far beyond my reach so I’m pretty much stuck at
solving SNES code and developing algorithms.

If you don’t know something, just seek help from someone or look up documents. The
important part is that you’re willing to learn ASM.

End of ASM tutorial.

Page 65 of 65



