
2024/06/04 23:27 1/13 Introduction

ff6hacking.com wiki - https://www.ff6hacking.com/wiki/

Introduction

This is a list of the opcodes used in the 65816 processor. It is used by the Super Nintendo System
(SNES) console.

For the registers, the following convention will be used:

Convention Description
A the low byte of the accumulator, always 8-bit
B the high byte of the accumulator, always 8-bit
C the low and high bytes of the accumulator, always 16-bit
X the X register, 8-bit or 16-bit
Y the Y register, 8-bit or 16-bit
P the processor register, always 8-bit

For the opcode arguments, the following convention will be used:

Argument Example Relative to
addr LDA $1234 memory address, short, 16-bit
const LDA #$80 constant, 8-bit or 16-bit

dp LDA $10 direct page, relative, 8-bit
long LDA $C21234 memory address, long, 24-bit
near BRA $1234 branch, relative, 8-bit

sr LDA $01,S stack, relative, 8-bit

LDA, LDX, LDY

Reads a value from the memory and stores it in the specified register. LDA will store in the A or C
register, LDX will store in the X register and LDY will store in the Y register.

flags
n highest bit of value loaded
z set if data loaded is zero
Opcode Syntax Bytes Notes

A1 LDA (dp,X) 2
A3 LDA sr,S 2
A5 LDA dp 2
A7 LDA [dp] 2
A9 LDA const 2 One extra byte if in 16-bit mode
AD LDA addr 3
AF LDA long 4
B1 LDA (dp),Y 2
B2 LDA (dp) 2
B3 LDA (sr,S),Y 2
B5 LDA dp,X 2

Last update: 2022/09/21 18:38 ff3:ff3us:doc:snes:opcode https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:opcode

https://www.ff6hacking.com/wiki/ Printed on 2024/06/04 23:27

Opcode Syntax Bytes Notes
B7 LDA [dp],Y 2
B9 LDA addr,Y 3
BD LDA addr,X 3
BF LDA long,X 4

Opcode Syntax Bytes Notes
A2 LDX const 2 One extra byte if in 16-bit mode
A6 LDX dp 2
AE LDX addr 3
B6 LDX dp,Y 2
BE LDX addr,Y 3

Opcode Syntax Bytes Notes
A0 LDY const 2 One extra byte if in 16-bit mode
A4 LDY dp 2
AC LDY addr 3
B4 LDY dp,X 2
BC LDY addr,X 3

STA, STX, STY

Reads a value from the specified register and stores it in the memory. STA will read the A or C
register, STX will read the X register and STY will read the Y register. All opcodes will store the
retrieved value in the specified address.

The STZ opcode will always store the value of zero in the designed memory address. Unlike the STA,
STX and STY opcodes, the STZ opcode doesn't affect flags. It also doesn't affect the A or C register.

Opcode Syntax Bytes Notes
81 STA (dp,X) 2
83 STA sr,S 2
85 STA dp 2
87 STA [dp] 2
8D STA addr 3
8F STA long 4
91 STA (dp),Y 2
92 STA (dp) 2
93 STA (sr,S),Y 2
95 STA dp,X 2
97 STA [dp],Y 2
99 STA addr,Y 3
9D STA addr,X 3
9F STA long,X 4

Opcode Syntax Bytes Notes
86 STX dp 2
8E STX addr 3
96 STX dp,Y 2

2024/06/04 23:27 3/13 Introduction

ff6hacking.com wiki - https://www.ff6hacking.com/wiki/

Opcode Syntax Bytes Notes
84 STY dp 2
8C STY addr 3
94 STY dp,X 2

Opcode Syntax Bytes Notes
64 STZ dp 2
74 STZ dp,X 2
9C STZ addr 3
9E STZ addr,X 3

TRB, TSB

Test all bits in the A or C register. For all bits set in the A or C register, the correspondent bits will be
set or unset in the designed memory address. TSB will set the correspondent bits and TRB will reset
the correspondent bits. All clear bits in the A or C register will be ignored and their correspondent bits
in the designed address will not be altered.

Opcode Syntax Bytes Notes
14 TRB dp 2
1C TRB addr 3

Opcode Syntax Bytes Notes
04 TSB dp 2
0C TSB addr 3

ADC, SBC

Add or subtract the value in the A or C register with the value in the designed memory address. ADC
will add the value and SBC will subtract the value.

When the carry flag is set, a value of one will be added in the addition or subtraction operation.

The operation can overflow or underflow. It is the coder responsibility to check these cases and adjust
the resulting value. A common method is to check the carry flag for overflow or underflow and cap the
value to a prefixed setting.

flags
n set if highest bit of result was set
v set if signed overflow?
z set if result is zero
c set if overflow or underflow
Opcode Syntax Bytes Notes

61 ADC (dp,X) 2
63 ADC sr,S 2
65 ADC dp 2
67 ADC [dp] 2
69 ADC const 2 One extra byte if in 16-bit mode

Last update: 2022/09/21 18:38 ff3:ff3us:doc:snes:opcode https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:opcode

https://www.ff6hacking.com/wiki/ Printed on 2024/06/04 23:27

Opcode Syntax Bytes Notes
6D ADC addr 3
6F ADC long 4
71 ADC (dp),Y 2
72 ADC (dp) 2
73 ADC (sr,S),Y 2
75 ADC dp,X 2
77 ADC [dp],Y 2
79 ADC addr,Y 3
7D ADC addr,X 3
7F ADC long,X 4

Opcode Syntax Bytes Notes
E1 SBC (dp,X) 2
E3 SBC sr,S 2
E5 SBC dp 2
E7 SBC [dp] 2
E9 SBC const 2 One extra byte if in 16-bit mode
ED SBC addr 3
EF SBC long 4
F1 SBC (dp),Y 2
F2 SBC (dp) 2
F3 SBC (sr,S),Y 2
F5 SBC dp,X 2
F7 SBC [dp],Y 2
F9 SBC addr,Y 3
FD SBC addr,X 3
FF SBC long,X 4

INC, INX, INY, DEC, DEX, DEY

Increment or decrement the specified register by one. It is equivalent to the ADC or SBC opcodes with
the value of one without the carry flag set.

INC will increment the A or C register. INX will increment the X register. INY will increment the Y
register. DEC will decrement the A or C register. DEX will decrement the X register. DEY will
decrement the Y register. The operation can underflow or overflow.

INC and DEC can also increment or decrement a value in memory instead of the A or C register.

flags
n set if most significant bit of result is set
z set if result is zero
Opcode Syntax Bytes Notes

1A INC 1 increment the A or C register
C8 INY 1 increment the Y register
E6 INC dp 2

2024/06/04 23:27 5/13 Introduction

ff6hacking.com wiki - https://www.ff6hacking.com/wiki/

Opcode Syntax Bytes Notes
E8 INX 1 increment the X register
EE INC addr 3
F6 INC dp,X 2
FE INC addr,X 3

Opcode Syntax Bytes Notes
3A DEC 1 decrement the A or C register
88 DEY 1 decrement register Y
C6 DEC dp 2
CA DEX 1 decrement register X
CE DEC addr 3
D6 DEC dp,X 2
DE DEC addr,X 3

AND, ORA, EOR

A binary operation is done between the register A or C and the memory. The AND opcode will do a
binary AND, the ORA opcode will do a binary OR and the EOR opcode will do a binary XOR. The result
will be stored in the A or C register.

flags
n set if highest bit is set
z set if result is zero
Opcode Syntax Bytes Notes

21 AND (dp,X) 2
23 AND sr,S 2
25 AND dp 2
27 AND [dp] 2
29 AND const 2 One extra bit if in 16-bit mode
2D AND addr 3
2F AND long 4
31 AND (dp),Y 2
32 AND (dp) 2
33 AND (sr,S),Y 2
35 AND dp,X 2
37 AND [dp],Y 2
39 AND addr,Y 3
3D AND addr,X 3
3F AND long,X 4

Opcode Syntax Bytes Notes
01 ORA (dp,X) 2
03 ORA sr,S 2
05 ORA dp 2
07 ORA [dp] 2
09 ORA const 2 One extra byte if in 16-bit mode
0D ORA addr 3

Last update: 2022/09/21 18:38 ff3:ff3us:doc:snes:opcode https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:opcode

https://www.ff6hacking.com/wiki/ Printed on 2024/06/04 23:27

Opcode Syntax Bytes Notes
0F ORA long 4
11 ORA (dp),Y 2
12 ORA (dp) 2
13 ORA (sr,S),Y 2
15 ORA dp,X 2
17 ORA [dp],Y 2
19 ORA addr,Y 3
1D ORA addr,X 3
1F ORA long,X 4

Opcode Syntax Bytes Notes
41 EOR (dp,X) 2
43 EOR sr,S 2
45 EOR dp 2
47 EOR [dp] 2
49 EOR const 2 One extra byte if in 16-bit mode
4D EOR addr 3
4F EOR long 4
51 EOR (dp),Y 2
52 EOR (dp) 2
53 EOR (sr,S),Y 2
55 EOR dp,X 2
57 EOR [dp],Y 2
59 EOR addr,Y 3
5D EOR addr,X 3
5F EOR long,X 4

BIT

Does a binary AND between the A or C register and the memory. Unlike the AND opcode, the binary
AND operation doesn't alter the A or C register.

flags
n Takes value of most significant bit of memory data
v Takes value from bit 6 or 14 of memory data
z Set if logical AND of mem and acc is zero.
Opcode Syntax Bytes Notes

24 BIT dp 2
2C BIT addr 3
34 BIT dp,X 2
3C BIT addr,X 3
89 BIT const 2 Add one extra bit if in 16-bit mode

2024/06/04 23:27 7/13 Introduction

ff6hacking.com wiki - https://www.ff6hacking.com/wiki/

CMP, CPX, CPY

Compare the designed register with the memory and sets flags based on the comparison. CMP will
compare the A or C register, CPX will compare the X register and CPY will compare the Y register.
Generally, a conditional branch opcode, based on a flag status, is used after these opcodes.

flags
n set if most significant bit of result is set
z set if result is zero
c set if register is equal or greater than memory
Opcode Syntax Bytes Notes

C1 CMP (dp,X) 2
C3 CMP sr,S 2
C5 CMP dp 2
C7 CMP [dp] 2
C9 CMP const 2 One extra byte if in 16-bit mode
CD CMP addr 3
CF CMP long 4
D1 CMP (dp),Y 2
D2 CMP (dp) 2
D3 CMP (sr,S),Y 2
D5 CMP dp,X 2
D7 CMP [dp],Y 2
D9 CMP addr,Y 3
DD CMP addr,X 3
DF CMP long,X 4

Opcode Syntax Bytes Notes
E0 CPX const 2 One extra byte if in 16-bit mode
E4 CPX dp 2
EC CPX addr 3

Opcode Syntax Bytes Notes
C0 CPY const 2 One extra byte if in 16-bit mode
C4 CPY dp 2
CC CPY addr 3

LSR, ASL

Shift bits in the designed register or memory address left or right. The LSR opcode will shift the bits
right and the ASL opcode will shift the bits left.

LSR is equivalent to divide the number by two and ASL is equivalent to multiply the number by two.
The operation can underflow or overflow. The bit shifted out will become the new carry. The bit shifted
in is zero.

flags: LSR
n cleared

Last update: 2022/09/21 18:38 ff3:ff3us:doc:snes:opcode https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:opcode

https://www.ff6hacking.com/wiki/ Printed on 2024/06/04 23:27

flags: LSR
z set if result is zero
c bit zero becomes new carry
flags: ASL
n set if most significant bit of result is set
z set if result is zero
c set if highest bit is moved into carry
Opcode Syntax Bytes Notes

46 LSR dp 2
4A LSR 1 shift A or C register
4E LSR addr 3
56 LSR dp,X 2
5E LSR addr,X 3

Opcode Syntax Bytes Notes
06 ASL dp 2
0A ASL 1 the operand is the register A
0E ASL addr 3
16 ASL dp,X 2
1E ASL addr,X 3

ROL, ROR

Shift bits in the designed register or memory address left or right. The ROL opcode will shift the bits
left and the ROR opcode will shift the bits right.

The bit shifted in is the old carry. The bit shifted out will be the new carry.

flags: ROL
n set if most significant bit of result is set
z set if result is zero
c the high bit (7 or 15) becomes the new carry
flags: ROR
n set if most significant bit of result is set
z set if result is zero
c low bit becomes the new carry
Opcode Syntax Bytes Notes

26 ROL dp 2
2A ROL 1 affects register A or C
2E ROL addr 3
36 ROL dp,X 2
3E ROL addr,X 3

Opcode Syntax Bytes Notes
66 ROR dp 2
6A ROR 1 affects register A or C
6E ROR addr 3
76 ROR dp,X 2

2024/06/04 23:27 9/13 Introduction

ff6hacking.com wiki - https://www.ff6hacking.com/wiki/

Opcode Syntax Bytes Notes
7E ROR addr,X 3

BPL, BMI, BRA, BCC, BCS, BNE, BEQ, BVC, BVS, BRL

Change the execution flow based on a conditional branch. If the condition is meet, the execution flow
will be changed for the designed address. Otherwise, it continues normally.

The majority of the conditional branches are based in flag status. The flags were setup by anterior
opcodes.

flags:
none
Opcode Syntax Bytes Notes

10 BPL near 2 BPL - branch if minus flag is clear, branch if plus
30 BMI near 2 BMI - branch if minus flag set, branch if minus
50 BVC near 2 BVC - branch if overflow clear
70 BVS near 2 BVS - branch if overflow set
80 BRA near 2 BRA - always branch
82 BRL addr 3 similar to BRA, but with longer range
90 BCC near 2 BCC - branch if carry flag clear
B0 BCS near 2 BCS - branch if carry flag set
D0 BNE near 2 BNE - branch if zero flag clear, branch if not equal
F0 BEQ near 2 BEQ - branch if zero flag set, branch if equal

JMP

Change the execution flow to the designed address.

flags:
none
Opcode Syntax Bytes Notes

4C JMP addr 3
5C JMP long 4
6C JMP (addr) 3
7C JMP (addr,X) 3
DC JMP [addr] 3

JSR, JSL

Calls a sub routine which will be executed.

The JSR opcode will put two bytes in the stack, relative to the return address. It is expected that they
will be retrieved by an RTS opcode in the sub routine.

The JSL opcode will put three bytes in the stack, relative to the return address. It is expected that they

Last update: 2022/09/21 18:38 ff3:ff3us:doc:snes:opcode https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:opcode

https://www.ff6hacking.com/wiki/ Printed on 2024/06/04 23:27

will be retrieved by an RTL opcode in the sub routine.

Opcode Syntax Bytes Notes
20 JSR addr 3
22 JSL long 4
FC JSR (addr,X) 3

RTS, RTL

RTS will pull two bytes from the stack and RTL will pull three bytes from the stack. They will be setup
as the new control flow address.

It is expected that the bytes in the stack were pushed from a JSR opcode for the RTS opcode and from
a JSL opcode for the RTL opcode.

flags:
none
Opcode Syntax Bytes Notes

60 RTS 1 pull two bytes from the stack as the return address
6B RTL 1 pull three bytes from the stack as the return address

CLC, CLD, CLI, CLV, SEC, SED, SEI

Set or reset flags.

Opcode Syntax Bytes Notes
18 CLC 1 clear carry flag
38 SEC 1 set carry flag
58 CLI 1 clear interrupt flag
78 SEI 1 set interrupt flag
B8 CLV 1 clear overflow flag
D8 CLD 1 clear decimal flag
F8 SED 1 set decimal flag

TAX, TAY, TXA, TYA, TSX, TXS, TXY, TYX, TCD, TDC, TCS, TSC

Transfer bytes between the specified registers or special addresses.

If the setting of the registers have different settings of 8-bit or 16-bit, the copy of the high byte of the
transfer can be truncated based on the opcode behavior.

flags: all except TCS
n set if most significant bit of transfer value is set
z set if transferred value is zero
Opcode Syntax Bytes Notes

1B TCS 1 from C to stack pointer

2024/06/04 23:27 11/13 Introduction

ff6hacking.com wiki - https://www.ff6hacking.com/wiki/

Opcode Syntax Bytes Notes
3B TSC 1 from stack pointer to C
5B TCD 1 from C to direct page
7B TDC 1 from direct page to C
8A TXA 1 from X register to A or C
98 TYA 1 from Y register to A or C
9A TXS 1 from X register to stack pointer
9B TXY 1 from X register to Y register
A8 TAY 1 from A or C to Y register
AA TAX 1 from A or C to X register
BA TSX 1 from stack pointer to X register
BB TYX 1 from Y register to X register

MVP, MVN

Move a block of bytes from a specified address to another address. The X register will be the start
address to copy from. The Y register will be start address to copy to. The C register will be the number
of bytes to copy minus one.

The opcode arguments are the source bank and the destination bank, in this order.

MVP must be used if the Y register is greater than the X register. Otherwise, MVN must be used
instead.

Opcode Syntax Bytes Notes
44 MVP src,dest 3
54 MVN src,dest 3

PEA, PEI, PER

Push bytes in the stack, based on the opcodes arguments. They always work in 16-bit mode.

Opcode Syntax Bytes Notes
62 PER label 3
D4 PEI (dp) 2
F4 PEA const 3 the argument is always 16-bit

PHA, PHP, PHX, PHY, PHB, PHD, PHK, PLA, PLP, PLX, PLY,
PLB, PLD

Push or pull bytes from the stack. The setting of the register or special address as 8-bit or 16-bit will
set the number of bytes pushed/pulled from the stack.

flags: PHA/PHP/PHX/PHY/PHB/PHD/PHK
none

Last update: 2022/09/21 18:38 ff3:ff3us:doc:snes:opcode https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:opcode

https://www.ff6hacking.com/wiki/ Printed on 2024/06/04 23:27

flags: PLA/PLX/PLY/PLB/PLD
n set if most significant bit of result is set
z set if result is zero
Opcode Syntax Bytes Notes

08 PHP 1 push flag register (8-bit)
0B PHD 1 push direct page register (16-bit)
48 PHA 1 push A or C register
4B PHK 1 push program bank register (8-bit)
5A PHY 1 push Y register (8-bit or 16-bit)
8B PHB 1 push data bank register (8-bit)
DA PHX 1 push X register (8-bit or 16-bit)

Opcode Syntax Bytes Notes
28 PLP 1 pull flag register (8-bit)(sets all flags)
2B PLD 1 pull direct page register (16-bit)
68 PLA 1 pull A or C register
7A PLY 1 pull Y register (8-bit or 16-bit)
AB PLB 1 pull data bank register (8-bit)
FA PLX 1 pull X register (8-bit or 16-bit)

NOP

Does absolutely nothing. It is mostly used to waste cycles. A few special registers or addresses can't
be fetch until a minimum number of cycles has passed.

If the coder needs to erase a code segment, for better performance, a branch or jump is
recommended instead of a long line of NOP opcodes.

Opcode Syntax Bytes Notes
EA NOP 1

REP, SEP

Setups the processor flags with the opcode argument. For each bit set in the argument, the
correspondent flag is set or reset. REP will reset the flags and SEP will set the flags.

bits description
$01 carry flag
$02 zero flag
$04 irq flag?
$08 decimal mode
$10 X and Y register: 0 = 16-bit, 1 = 8-bit
$20 accumulator: 0 = 16-bit, 1 = 8-bit
$40 overflow flag
$80 negative flag
flags
all

2024/06/04 23:27 13/13 Introduction

ff6hacking.com wiki - https://www.ff6hacking.com/wiki/

Opcode Syntax Bytes Notes
C2 REP const 2 const is always 8-bit
E2 SEP const 2 const is always 8-bit

XBA

Exchanges the A and B registers.

flags
n set if the most significant bit of the new value in the low order 8 bits (A) of the accumulator is set.
(former bit 15)
z set if new value of the lower order 8 bit accumulator (A) is zero.
Opcode Syntax Bytes Notes

EB XBA 1

XCE

Exchanges the carry flag and the emulation flag.

flags
e from previous carry flag
c from previous emulation flag
m native mode flag only. switching to native 65816 mode sets to one
x x is a native mode flag only
b brk is an emulation 6502 flag only. it is set to 1 to become the x flag in native mode
Opcode Syntax Bytes Notes

FB XCE 1

Miscellaneous
Opcode Syntax Bytes Notes

00 BRK ? software break
02 COP const ? coprocessor empowerment
40 RTI 1 return from interrupt
CB WAI 1 wait for interrupt
DB STP 1 stop processor

From:
https://www.ff6hacking.com/wiki/ - ff6hacking.com wiki

Permanent link:
https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:opcode

Last update: 2022/09/21 18:38

https://www.ff6hacking.com/wiki/
https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:opcode

	Introduction
	LDA, LDX, LDY
	STA, STX, STY
	TRB, TSB
	ADC, SBC
	INC, INX, INY, DEC, DEX, DEY
	AND, ORA, EOR
	BIT
	CMP, CPX, CPY
	LSR, ASL
	ROL, ROR
	BPL, BMI, BRA, BCC, BCS, BNE, BEQ, BVC, BVS, BRL
	JMP
	JSR, JSL
	RTS, RTL
	CLC, CLD, CLI, CLV, SEC, SED, SEI
	TAX, TAY, TXA, TYA, TSX, TXS, TXY, TYX, TCD, TDC, TCS, TSC
	MVP, MVN
	PEA, PEI, PER
	PHA, PHP, PHX, PHY, PHB, PHD, PHK, PLA, PLP, PLX, PLY, PLB, PLD
	NOP
	REP, SEP
	XBA
	XCE
	Miscellaneous

