
GBA and DS ROM hacking guide - 2016 edition.

FAST6191

13th January 2016

1

Section Content to do, improve or �x.

Part 2
Section 1 PS3 iso unpacking links, for dreamcast sure up and include Iso

LBA Fix (iso�x) by DeXT
More hardware documentation links. nocash for PS1, SNES

and more. Also debuggers.
https://wiki.neogeodev.org/index.php?title=Main_Page

Section 2 3d matrices, viewpoint (analyse mario kart cheats) and polish
rest of 3d

Tweak NSBMD palette �nding
Polish NSBMD (tool) vertices decoding

YuGiOh example �nish
Eragon example?

Section 3 Finish example reverse engineering El Tigre
Scripting- lua from El tigre and maybe puzzle quest

Improve standard text extraction/insertion
Section 4 Improve sseq looping

GBA sound- sappy hacks
http://www.hcs64.com/mboard/forum.php?showthread=34052&showpage=1

new DS sound format.
Improve video section (castlevania and digimon)

Section 5 Finish items and start of levels worked example, improve
discussion of randomisers and give some worked examples.

Take pictures of new desmume cheat engine
Secret/debug menu �nding via control monitoring and control

changing
Finish overlay compression dodging

http://gbatemp.net/threads/recompressing-an-overlay-
�le.329576/#post-4387691

Part 3
GBA tracing
DS tracing

Example hacks
Python section and basic batch �les

romulan junked for radare2, needs �nishing and tidy up.
Possibly consider just python.
Links and further reading

Part 4 Formats (all)
More glossary?

Index?

2

Abstract

ROM hacking for the purposes of this document will be de�ned as
the the editing of ROM images and ISO images (ISO being the tradi-
tional term for images of optical media) with the intent of changing how
underlying game code or the assets of it function in a useful way. Sim-
ply changing sections of an image without rhyme or reason is not ROM
hacking as ROM hacking is usually the end result of a measure of reverse
engineering.

The following document covers ROM hacking methods with a focus
upon GBA and DS hacking techniques but with occasional asides into
the other home consoles. Broadly speaking there are two main meth-
ods of producing useful ROM hacks with the most e�ective but initially
most complex being the traditional de�nition of ROM hacking (sometimes
called low level ROM hacking) where formats and methods of interaction
are reverse engineered before being altered and extended. The other type,
most often associated with the Pokemon franchise but far from exclusive
to it, revolves around using premade tools to change games extensively in
a manner closer to more traditional text, graphics and level editing, how-
ever with the use of such tools there can be very extensive hacks created in
a short period of time by those with minimal knowledge of the underlying
processes. It should also be noted that in recent times a third and pos-
sibly fourth type have arisen, especially on the DS, where developers are
commonly seen to use formats from the SDK or some other development
library that brings aspects of low level hacking and tool driven hacking
together by allowing rapid decoding of formats and exporting them be-
fore conducting lower level operations to insert the modi�cations and the
potential fourth candidate has been seen in programs allowing plugins or
scripts to be created using simple often text or XML a like formats to do
similar things.

With regards to premade tools they will not be a focus of this document
although if ones exist they might be mentioned.

Categorisation can occur several more times with one in particular
forming the outline of this document. In short the four main categories
of ROM hacking seen today are graphics editing, text editing, multime-
dia editing and game logic (which includes assembly coding). Each of
those can be subdivided at least one more time to say nothing of each of
those drawing from the other categories or having elements cross over (for
instance in many puzzle games the text is encoded as regular graphics
formats). The other categorisation, in this case of the hacks themselves,
that will be thrown about a bit is translation, improvement, alteration
and spoof. Such categorisations are of limited use for this document as
they can all display very advanced techniques in each of the previously
discussed categorisations.

This document is largely intended for those that do not know much
about ROM hacking or low level computing beyond maybe the command
line interface, that said those at all levels of computing and ROM hacking
knowledge should be able to get something from this and it is hoped that
the focus on the GBA and DS will aid those looking to transfer from other
consoles.

3

Foreword

This is quick update for 2016 of my ROM hacking guide, a guide that I have been
writing on and o� for several years at this point. This version is a continuation
of the 2012 edition which itself was almost a complete rewrite of earlier e�orts
and is mainly to �x a few broken links. Not a lot has been added since the 2014
version which in turn was to update a few links. A guide was �rst attempted a
little under a year after I decided to take up ROM hacking in earnest, a period
which coincided with the rise of the dedicated DS �ash cart. Give or take some
�ddling with PC games many years before my �rst real in was probably learning
to shrink ROM images to �t on GBA era devices that were not built to cater
with �le sizes seen in commercial DS titles. The �rst version was little more
than collections of forum posts I made on various subjects and short overviews
of the areas aiming to point people in the right direction if they wanted to
learn how to do something, the later versions aimed to teach people some of the
underlying principles and this continues along that path.

At one point there was a sister document aiming more at hardware and
device hacking, various parts were merged into this but for the most part that
project was put on inde�nite hold. Beyond that it might be considered outside
the scope of this document, however it is far from unusual to see people with
serious electrical and mechanical engineering skills become accomplished ROM
hackers as the thought processes and mentality tends to �t in well.

I have always pulled things apart and poked around in directories of pro-
grams in an attempt to see how they tick or tweak them to my liking. As far as
ROM hacking is concerned the turning point came when I decided if something
did not reveal itself via super�cial means (plain text or some minor markup,
double clicking the �les and maybe a quick search of the program/extension)
then I would attempt to drill down into it to �gure it out. It soon occured to
me that this would require knowledge of how things work from the ground up
(or close enough to it) so that became what I sought to do. This was the start
of an ongoing process I have been able to apply in many aspects of life and has
instilled a mindset that continues to serve me well.

Countless sites, hackers, conversations and tools have gone into getting this
document and the author to this point but special mentions go to the DS ROM
hacking section of GBAtemp, romhacking.net and anybody I have held a dis-
cussion with on those sites, cearn who authored the GBA programming tutorial
Tonc and Martin Korth who is the author of the no$gba speci�cations, though
they detail very little of direct use to a lot of ROM hacking it can easily be said
that most of present GBA and DS ROM hacking would not have got o� the
ground without them. Last but not least those responsible for the Crystaltile2
program that ties together several nice tools into a single program which allows
me to tear about the ROM images at breakneck pace in a manner, one would
be hard to do using basic tools and indeed it took until 2011 for us to see other
tools that rank up there with it, when attempting to �gure out how a ROM
works.

4

http://gbatemp.net/forum/41-nds-rom-hacking-and-translations/
http://www.romhacking.net/
http://www.coranac.com/tonc/text/toc.htm
http://problemkaputt.de/gbatek.htm

Contents

I Introduction 12

II ROM hacking concepts 15

1 Basics 15
1.1 Hexadecimal . 15

1.1.1 Representation . 17
1.1.2 BCD (Binary coded decimal) 18
1.1.3 Big and little endian . 19
1.1.4 Signed values, �oating point and �xed point 19

1.2 Hex operations . 24
1.2.1 Shift . 24
1.2.2 Rotate . 25
1.2.3 Flip . 25
1.2.4 Boolean logic . 26
1.2.5 Hex Mathematics. 27

1.3 Patching and patch making . 28
1.4 File systems and operations . 30

1.4.1 Non �lesystem devices . 30
1.4.2 GBA . 30
1.4.3 DS . 31
1.4.4 3DS . 32
1.4.5 GC (gamecube) . 32
1.4.6 Wii . 32
1.4.7 Xbox . 33
1.4.8 Xbox 360 . 33
1.4.9 PS1 and PS2 . 34
1.4.10 PS3 . 35
1.4.11 PSP . 35
1.4.12 Saturn . 35
1.4.13 Dreamcast . 35
1.4.14 Amiga . 36
1.4.15 PC and related hardware. 36

1.5 Finding the object of your interest. 36
1.6 Abstraction . 38
1.7 Tools of the trade continued . 39

1.7.1 Hex editor . 39
1.7.2 Tile editor . 52
1.7.3 Spreadsheet and command line 55
1.7.4 Compression . 57
1.7.5 Music . 58
1.7.6 ASM/Assembly . 59

1.8 Basic �le format concepts . 63

5

2 Graphics 65
2.0.1 Aliasing . 66
2.0.2 Haloing . 66
2.0.3 Bit depth . 67

2.1 Palettes and colours . 67
2.1.1 GBA colours (15 bit) . 67

2.2 Tiles . 68
2.2.1 1Bpp . 68
2.2.2 4 Bpp . 68
2.2.3 8Bpp . 69
2.2.4 GBA3 Xbpp . 70
2.2.5 GBA2 4BPP . 71
2.2.6 Bitmap . 73
2.2.7 Known formats . 73
2.2.8 Crystaltile2 export and import. 73
2.2.9 Avoiding gradients, AA, lossy compression, noise and such

things. 77
2.3 Layout, timing, OAM and special e�ects 78

2.3.1 Introduction to the OAM and BG modes. 78
2.3.2 Timing . 79
2.3.3 GBA and DS OAM (sprites) 79
2.3.4 GBA and DS BG modes 82
2.3.5 Basic animation . 86
2.3.6 Window feature . 91
2.3.7 Special features (�ipping, a�ne transformation, alpha and

such) . 91
2.3.8 Basic DS layout formats and mapping 93
2.3.9 Video memory handling and alignment 96

2.4 3d . 97
2.4.1 Basic 3d (bones, coordinates, keyframes) 98
2.4.2 Viewpoints . 100
2.4.3 Textures and material colours 100
2.4.4 Models . 101
2.4.5 Lighting/shadows . 102
2.4.6 3d smoke and fog . 103
2.4.7 Animations . 104
2.4.8 DS 3D hardware . 105
2.4.9 The shift of the 3D to DS 2d 107
2.4.10 NSBMD . 107
2.4.11 Non NSBMD . 117

2.5 Notes and further reading . 118

3 Text 119
3.1 Tables . 119

3.1.1 Relative searching . 121
3.1.2 Corruption and alteration 127
3.1.3 Memory viewing and corruption 130
3.1.4 Frequency analysis . 131
3.1.5 Language analysis . 133
3.1.6 Pointer and encoding/hex analysis 134

6

3.1.7 Assembly tracing . 134
3.1.8 Font viewing . 134
3.1.9 Language comparing . 135
3.1.10 Table creation tools . 135

3.2 Pointers . 138
3.2.1 Special cases and non pointer concepts 139
3.2.2 Example reverse engineering of pointers 140

3.3 Markup, control codes and placeholders 144
3.3.1 Worked example . 144

3.4 Fonts . 149
3.4.1 NFTR . 150
3.4.2 Common hacks . 156

3.5 Scripting and layout . 160
3.5.1 Layout and limits . 168

3.6 Text extraction and insertion . 169
3.6.1 Text extraction . 170
3.6.2 Text insertion . 172

3.7 Language detection in DS games 174
3.8 Translation hacking . 174

3.8.1 The types of Japanese characters and how they work - . 176
3.8.2 Japanese glyphs/characters and observations on the lan-

guage . 178
3.8.3 On language . 180
3.8.4 Right to left languages and translation. 180

3.9 Japanese text editors and translation tools 181
3.9.1 General Japanese capable text editors 181
3.9.2 ROM hacking tools . 182
3.9.3 CAT tools . 182

4 Multimedia 184
4.1 Sound . 184

4.1.1 SDAT (NDS) . 188
4.1.2 Others . 195
4.1.3 Tracker formats . 197
4.1.4 General rule of thumb for custom audio formats 197
4.1.5 Common DS SDAT audio hacks (undubbing, injection,

tweaks and relinking) . 197
4.1.6 GBA audio . 216

4.2 Video . 220
4.2.1 General video theory . 221
4.2.2 Mods/VX/act imagine by Mobiclip. 222
4.2.3 RAD/Bink . 222
4.2.4 Criware . 223

4.3 Cut scenes . 223

5 Game logic 224
5.1 Levels and Stats . 224

5.1.1 Example tools . 226
5.1.2 Level editing techniques 227
5.1.3 Stats . 237

7

5.1.4 RPG randomiser . 238
5.2 Compression . 238

5.2.1 Lossy . 239
5.2.2 Lossless . 239
5.2.3 Basic theory of the actual implementations 240
5.2.4 Compression at hexadecimal level 246

5.3 Cheating . 248
5.3.1 General cheat making . 249
5.3.2 GBA cheat making . 251
5.3.3 DS cheat making . 253
5.3.4 Basic making of a cheat 256
5.3.5 Cheat prevention methods and frustrations 260
5.3.6 Instruction editing cheating 264

5.4 Programming concepts . 267
5.4.1 Functions and procedural programming. Also return ori-

ented programming/ROP 267
5.4.2 IF ELSE . 268
5.4.3 Recursion . 268
5.4.4 Iteration . 269
5.4.5 Loops . 269
5.4.6 Turing complete . 269
5.4.7 Fundamentals of Assembly 270

5.5 Assembly . 273
5.5.1 ARM . 274
5.5.2 GBA Assembly speci�cs 275
5.5.3 DS Assembly speci�cs . 279
5.5.4 The GBA and DS compared 284
5.5.5 On controls . 285
5.5.6 Hooking . 286
5.5.7 GBA cart as extra memory for DS hacks 287

5.6 Non speci�c assembly discussion. 287
5.6.1 Language mod example 287
5.6.2 Non code in ASM . 290
5.6.3 Destructive vs non destructive assembly editing 291
5.6.4 Polymorphic and dynamic code 292
5.6.5 Slowdown and speedup 294
5.6.6 Cryptography (encryption, checksums and signatures) . . 295
5.6.7 Multiplayer and the failure of Nintendo's online DS security.301
5.6.8 Save editing . 301
5.6.9 Interpreted languages . 303
5.6.10 Game AI, game logic and game theory 303

5.7 Flash cart and emulator theory 307
5.7.1 GBA . 309
5.7.2 DS . 311

5.8 ROM hacking �protection� . 313

III Examples, oddities and techniques. 315

6 Crystaltile2 general usage guide 315

8

7 GBA tracing 320
7.0.1 Worked examples . 321

8 DS tracing 321
8.1 Cart read command . 322

8.1.1 Basic lookup and methods for it 322
8.1.2 Header reverse engineering/generated values 322

9 Reverse engineering various ROM images 322
9.1 Large archive on top of �lesystem 323

9.1.1 Tony Hawk . 323
9.1.2 Star Wars - The Force Unleashed 323
9.1.3 El Tigre Make my mule 323

9.2 Compression . 323
9.3 First Person Game . 324
9.4 Platformer . 324
9.5 Fighting games . 324
9.6 Role playing games . 324
9.7 Racing games . 325
9.8 Puzzle . 325

9.8.1 Mahjong game . 326
9.8.2 Tetris . 326

9.9 Other genres . 326

10 Developer leftovers 326

11 Workarounds 327

12 Moving to a new system 327

13 Developer tricks aka thinking like a game developer 328
13.0.1 Level and mechanism design 328
13.0.2 Sprite and palette reuses 329
13.0.3 Pre rendering . 330
13.0.4 Speed blur and fog . 330
13.0.5 Loading covers . 330
13.0.6 Optimisation of loading 330
13.0.7 3d imagery in general . 331
13.0.8 Procedural generation . 332
13.0.9 Noise on images and sound. 332
13.0.10Using the limits of the system/working to them 332
13.0.11Network coding . 333

14 Game design and media 333

15 Python, batch �les and programming for ROM hacking 334
15.1 radare2 reverse engineering tools 334
15.2 Programming languages . 334
15.3 Python . 335

9

16 PC program hacking 335
16.1 Debugging . 336
16.2 Decompilation . 337

17 Version control and project management. 338
17.1 Project and team management 338
17.2 Version control . 339

18 Interesting links and further reading. 340
18.1 Links . 340
18.2 Further reading . 341

IV File formats (speci�cations, methods and known
formats). 342

19 General things about the DS 342

20 Generic DS nitro SDK format 342

21 General �le reverse engineering 342
21.1 Headers . 343
21.2 File sizes . 343
21.3 Multiple versions of the game . 343
21.4 File names and extensions . 343
21.5 Tile viewers . 343
21.6 Pointers and such . 344

22 Sound 344
22.1 SDAT . 344
22.2 SSEQ . 344
22.3 STRM . 344
22.4 SWAR . 345
22.5 SWAR . 345
22.6 BANK . 346
22.7 Other formats . 346

23 Graphics 347
23.1 NCER . 347
23.2 NANR . 347
23.3 NCGR . 348
23.4 NSCR . 348
23.5 NMCR . 348
23.6 NFTR . 348
23.7 NSBMD . 349
23.8 NSBTX . 349
23.9 NSBCA . 350

24 Packing format 350
24.1 NARC, ARC and CARC . 350

10

25 Text 350
25.1 BMG . 350

V Glossary, index and such 352

26 Glossary 352

11

Part I

Introduction
Although the preceding sections have detailed some of what is to come and
how it will work the introduction is still necessary. Broadly speaking there
are four parts to this document including this introductory section. The bulk
of this document will be taken up with parts on the areas of ROM hacking
(graphics editing, text editing, multimedia editing and game logic) and a more
free form part where the reader is shown some examples of hacks, methods and
games in an attempt to convey some real world basis to a lot of the examples in
the more general section that it would have been too unwieldy to keep in that
part, too troublesome to categorise them or if they are otherwise little curiosities
discovered over the years (it is these little curiosities that keep things interesting
for many ROM hackers).

Traditionally in such guides something borderline philosophical or general
tends to be said about now and there is little need to break from tradition
right now. To this end concerning the qualities that make for a good ROM
hacker they are arguably patience, or perhaps a deep down acceptance that
every problem in computing can be solved, and near boundless curiosity. Great
ROM hackers have come from all walks of life but most interestingly it seems
traditional education, good experiences or bad within it, is not necessarily a
great indicator of how well a person will take to ROM hacking.

The tools of the trade are many and varied but they can usually be broken
down into �ve basics with only really the last being ROM hacking speci�c.

1. A hex editor. Unless quantum computing appears and takes over tomor-
row all computers you will deal with boil down to binary (covered later
but this is the 1 and 0 stu�) which is very simply abstracted to hexadec-
imal. It is usually ill advised to do anything more than viewing a format
as a broad whole, looking in depth for a pattern or at small section, or
making a simple change (be it a simple edit of a line, a �nd and replace,
a basic operation or inserting something new) in a hex editor but those
small changes can be the thing that makes a ROM hack work. 1a could
be said to be a compression handling tool as compression is quite often
standardised and often provides an immediate and, these days at least,
simply worked around barrier to seeing a format as the program itself will
see it.

2. A spreadsheet or some method of being able to manipulate/do repeated
operations on a large list of numbers (in hexadecimal or otherwise). Com-
puters are largely just tools for repeated manipulation of numbers, any-
thing more usually coming at a steep cost in terms of resources required,
so being able to manipulate large lists of numbers is useful.

3. A text editor. Related to the above two it is often bene�cial to be able
to manipulate sections of text and hexadecimal and perform extended
searches upon them which is an arena text editors have long had serious
abilities in.

4. A web browser. Although you will often be pulling things apart that have
never been pulled apart before (and as high level programming languages

12

become more viable for systems of the day that can be more true than ever)
you will also be standing upon the shoulders of others all the time. To
this end being able to see what others have done before you and research
the underlying methods is very much necessary. As the doorway to the
technical world these days is a web browser...

5. A tile editor. Used correctly a hex editor will allow you to see patterns in
code and text but graphics are a huge part of nearly all games so being
able to see graphics is immensely useful. See also the note on compression
for hex editors as it can apply even more here (in a hex editor you can
reasonably still follow what is going on but anybody that uses a tile editor
for more than a few minutes will usually see how a mess of pixels can turn
into a viewable image very quickly and be broken just as easily).

A familiarity with the basic usage of the command line (running something from
one using some switches, the idea of piping and how to create a batch �le at the
level of just a series of commands) and the usage of a spreadsheet (what cells
are, the �ll command and how to enter basic functions) will be useful but any
speci�cs or more complex concepts will be covered where appropriate.

Your computer to do all this does not necessarily have to be that powerful
by the standards of any day and especially in present times. Naturally there
are techniques like some of the high end searching, some compression related
activities and emulation of other consoles that push systems hard but a lot of
damage can be done with considerably more modest systems. The added bonus
of taking up ROM hacking compared with pulling apart real world devices
(although such activities are also great fun) is that provided suitable backups
are in place, and you really should get into the practice of making regular and
preferably incremental backups of your work (some mention of methods by which
you can do this is made in part 3), any damage can be undone by pressing undo
or copying and pasting something else in, not to mention the further bonus
of it allowing you to take many branching paths in an attempt to solve your
problem. However many will suggest that if you can get a machine with at least
two monitors of reasonably high resolution you will be doing well.

On jargon. Without going back to the philosophical pondering elsewhere in
this part or contemplating some of the more extreme areas of physics there comes
a point where describing something becomes needlessly long winded so it is
abstracted to a term or series of terms at the cost of having someone somewhere
(somewhen?) lack a frame of reference for it. Hopefully any technical terms
encountered will be explained in the paragraph, have been explained before
it or are not of immediate relevance to the matter at hand. Note that this
de�nition di�ers slightly from The Jargon File's de�nition.

Warning

Much of what you are about to read will train you in how to pull things apart,
this eventually leads to you being able to pull things apart just by looking at
them and it will become instinct to do so; you have probably seen variations
on this in others that spend their days concerned with or have had training in
a �eld and will constantly notice problems where others have attempted to do
something in said �eld. There are ways for creators of works to lessen this but

13

http://www.catb.org/~esr/jargon/html/distinctions.html
http://xkcd.com/1015/

they are costly to do and as most people do not spend their time pulling things
apart they tend not to be done. This means you will quite often see just how
things work, moreover you will see exactly how they have failed which can ruin
things you might have previously enjoyed.

If you are not careful this can turn you into a snob/art critic, another vari-
ation is the better version of this is where you will possibly be able to see the
worth in just about anything and enjoy it. To this end be warned of each of
these possibilities.

14

Part II

ROM hacking concepts
An attempt has been made to divide sections up but you are advised not to pay
that much attention to them, or at least do not consider them indivisible if for
no other reason than just about any of these is the worthy of being the subject
of a document longer than this one. Although it is the default position of this
guide anyway this part will focus more upon the hardware underpinning things,
any dominant formats/concepts and some basic techniques to use rather than
simple tool usage (although much of that is covered too) with the next part
being given over to fully worked examples rather than the simplistic techniques
or overviews favoured in this section.

1 Basics

This section contains some of the basic terms, concepts and ideas that will make
ROM hacking and this document a bit easier to grasp. Before this starts though
there are three equally important truths to know

1. Any problem as far as �what does this represent?� goes can be solved.

2. The bits you are looking at can mean anything and it is only with context
you will �gure out what they do in that instance.

3. The bits might represent anything but any modern, non trivial system
will layer things on top of each other in a process known as abstraction.
Drill down or drill up as far as you need but there will usually be a limit
where going further is just for intellectual curiosity and not much more.

1.1 Hexadecimal

As you might know all current computers are binary machines which is to say
they operate on the idea of a reasonably continuous feed of of 1 and 0 values
to various pins to do what needs to be done. 1 and 0 get very hard to read so
these are stacked up 4 deep to form hexadecimal (a very similar logic to writing
things like 1x10^9 instead of 1000000000). 4 things each with the ability to be
one of two di�erent states means 16 combinations and it is then desirable to be
able to display each combination as a single character so the letters A through
F join the Arabic numbers (0 through 9) to make 16 (A=10 decimal, B=11 and
so on to F=15 at which time it wraps around and 10=16 decimal).

A quick reference table

15

Decimal Hexadecimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

The thing to remember about binary is that it is much like the number 1567
decimal means 1 count of 1000, 5 counts of 100, 6 counts of 10 and 7 counts of
1 or in words it is a list of counts of ten raised to a power. For binary rather
than ten you use 2 so 1110 means one count of 8, one count of 4, one count of 2
and zero counts of 1. There are all sorts of tricks and things you can learn here,
many of which will be covered before long, and some are almost as essential as
hexadecimal when it comes to understanding the document to come.

You can learn to convert it and do maths with it in your head if you like and
it is certainly a useful skill, however most of the time you will just be �nding the
value (in which case a program will probably be doing it) and everything from
windows bundled calculator (in scienti�c mode) upwards will convert between
the various bases (base10= decimal, base2= binary, base16=hexadecimal) and
be able to perform maths with it.

There is a fourth method called Octal aka base 8 that uses 0 through 7 and
represents 3 bits but 3 is a terrible number to work with and multiply with (it
being a prime number and all) so it tends not to be used outside of speci�c
applications. There are further variations on this theme in things like Base64
but that is an encoding scheme for transmission of data and will be covered
later in text hacking.

In summary hex(adecimal) is just a numbering scheme that works better
than regular decimal for computing purposes and nothing more. Quite often new
hackers are seen to assign a near magical status to hexadecimal when it really
deserves nothing of the sort; the magical stu� is assembly hacking. Certainly
it is very hard to take a look at an entire ROM and edit it just from a hex
editor which is why nobody does it from scratch, if they appear to then it is
almost certain they either did a lot of work to get to that point (there are many
programs that will spit out locations and interesting values). Putting in the time
to reverse engineer the original work is what ultimately allowed for the simple
edit, failing that the �le conforms to a known standard (open up any proper DS
ROM and the �rst line will be a ASCII encoded text string of the internal name
of the ROM and there are similar things for most DS �les/formats) or enough
of a standard that a basic edit is possible.

16

1.1.1 Representation

There is a very overdone computing joke along the lines of there are 10 kinds of
people in the world (those that know binary and those that do not).

As said �joke� just illustrated it is hard or even impossible to know what set
of numbers is being used. As you can take down an entire system with an errant
bit, let alone a complete misinterpretation, there needs to be a way to indicate
what is being used. In mathematics a subscript decimal value of the base you
are using is used but that is awkward to write in a basic text editor so various
notations have been used. The most common ones being 0x???????? (sometimes
the 0x is repeated after so many values but not always), ????????h/h????????,
#???????? (this is the way HTML does it but not so many ROM hackers will
use it), %???????? (this is the way your browser probably signi�es it with %20
for example being the ASCII text encoding for a space) or simply ???????? hex.
Most people are quite happy to accept a bit of redundancy in exchange for a
lack of confusion here.

Stick two hexadecimal numbers together (sometimes called nibbles/nybbles)
and you have a byte. From there it can stack further although it can get a bit
tricky as it varies between computer architectures (32 vs 64 bit for instance),
operating systems and sometimes programming languages. In general most
people will stick to the 32 bit C interpretations of all this and that is what this
document will be using unless otherwise stated.

Going further the terms halfword, word, double word (dword), quad word,
short, long and int are what is interesting and are probably worth knowing.

Most of the time it follows on from bytes with half word being 16 bits aka
2 bytes, words being 32 bits aka 4 bytes, dwords being 64 bits and so on. In
ROM hacking few people will use the terms short and long and especially not
the term �int� as the �bit� of the processor in question will vary this, the main
exception being if they are de�ning a format in a similar manner used in a
programming language (in which case uint for unsigned integer, u8, u16 and
similar things appear). If you do go looking �typedef� is the usual catch all
term to describe this sort of thing and many programming tutorials will quite
rightly spend a lot of time covering these concepts. In many ways it is not that
useful to ROM hacking until you get to analysing what might have happened
in the original source to get to here, at this point you probably already know
the/a programming language.

An important extra term when discussing this is boundary/alignment. Un-
less you are writing poetry you probably do not have to make your sentences
a given number of letters/words but computers tend to like it more if the data
starts on a multiple of a given value (sometimes it might be "byte aligned" but
more often it is word aligned or even higher1) or involves manipulating a given
length of memory (various internal functions of the DS and GBA prefer to only
operate on similarly aligned sections of memory).

One link that has some good stu� if you want to go further is the art of
assembly but if things are preferred a little closer to conventional maths grin-

1There are hardware limits on the GBA and DS depending upon what you are doing (it
will be covered in graphics and compression later) but in theory nothing needs to be word
aligned. Most things will be word or aligned to an even larger multiple though so unless you
can demonstrate otherwise stick with what you �rst see. Certainly for the initial passes of
most �les assume at least byte alignment.

17

http://www.plantation-productions.com/Webster/www.artofasm.com/Windows/HTML/DataRepresentation.html#998834
http://www.plantation-productions.com/Webster/www.artofasm.com/Windows/HTML/DataRepresentation.html#998834
http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html
http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html
http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html
http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html
http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html
http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html

nell.edu have a nice page.

1.1.2 BCD (Binary coded decimal)

Mentioned mainly as it is a nice example on how binary and hex mean very
little without context. It is seen in one place on the DS in the �rmware and
things stemming from it (mainly the clock and calendar functions) as well as
older programs, for a while certain processors even had functions in their silicon
for it, but it is rarely seen when hacking ROM images these days.

There some minor variations here (the standard 8,4,2 and 1 can make every
combination between 0 and 9 but so can 5,3,1 and -1) but they are not commonly
seen. As mentioned the standard method is the same as the translation of binary
to hexadecimal so bringing back the table with only the relevant entries.

Decimal Hexadecimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001

Using the clock example if you wanted to represent the time 15:30 you could
�gure out a way to encode it or just use BCD

0001 0101 0011 0000 which has a decimal equivalent of 5424 (not 1530) but
can quite happily represent the time.

For a quick example of the 5,3,1 and -1 scheme also mentioned
Decimal Hexadecimal Binary

0 0 0000
1 1 0010
2 2 0101
3 3 0100
4 4 1001 or 0110
5 5 1000
6 6 1010
7 7 1101
8 8 1100
9 9 1110

15:30 once more
0010 1000 0100 0000 which has a decimal equivalent of 10304 but according

to the scheme above will decode as 1530.
There have been cases of things using it to display fractional values which

can be useful as there are certain common things plain hexadecimal struggles
with.

18

http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html

1.1.3 Big and little endian

Absolutely vital when dealing with the GBA and DS in any real depth is the
concept of endianness. Historical reasons are the main reasons for it existing
in the �rst place although it does have value still, as many systems use it the
aspiring ROM hacker has to know about it. In short where the conventional
maths and devices with X86 family chips (most PCs) display the most signi�cant
number �rst devices using ARM chips (and many others) which include the GBA
and DS display the least signi�cant bytes �rst.

In practice it means some locations/lengths might be written as something
like A036 0104 when in fact they read 0401 36A0. Although many hex editors
will support a change between big and little endian the process by which most
of it is rendered readable is usually a �ip across so many bits (32 bit �ip means
32 bits as above will be �ipped, 16 bit �ip means only two bytes will be �ipped).

Seen as most people code on a PC, or a device that is emulating a PC setup,
it is far from unheard of for a device to see a format use the opposite type of
endian to what it is.

1.1.4 Signed values, �oating point and �xed point

There is also the matter of signed bytes and (�oating) point values for as with
computers not being able to easily write subscript they tend not to have pro-
visions for negative symbols and values after the �decimal� point either. Do
note that some of these methods have since made their way into silicon as well,
though the GBA and DS are somewhat lacking here.

Signed values Various methods exist here with popular ones including ones
complement, twos complement and excess 7. Each have advantages and some
disadvantages depending upon what you are doing although the biggest disad-
vantages to some of the simpler methods are the inability to do simple maths
without conversion and the existence of two values for 0 which makes comparing
and acting on the results tricky.

Signed numbers are also one of the reasons for some stats ending at 511 or
127 or similar (it should become apparent why this is very shortly) with the
other big reason, assuming the �rst bit is not simply ignored, is that program-
mers frequently like using the �rst bit to encode something or act as a �ag of
some form (for instance the DS archive format NARC uses it so signify a sub-
directory). For another source on the subject grinnell.edu's CS152 has a nice
version.

Sign and magnitude Here the �rst bit of a value is given over and called
a negative �ag which is also another name for the method (although the term
can be used more generally when dealing with signed numbers), another name
is signed magnitude.

Here the �rst bit is given over to being a sign with the rest of the numbers
being interpreted as usual. It is the most similar method to conventional count-
ing/maths. 0 means positive while 1 means negative. 0000 0001 equals 1 and
1000 0001 equals -1

19

http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html
http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html

Ones complement For the ones complement a bitwise NOT operation
(covered in more detail later but in short it changes every 0 into a 1 and every
1 into a 0) is applied to a positive number making the negative counterpart. It
has problems as basic maths can not be done so easily and it has the problem
of two values for 0.

0001 becomes 1110

0010 becomes 1101

0011 becomes 1100

Twos complement Marginally more complex than the others mentioned
so far is twos complement but as it does not have the pitfalls of the other numbers
(two representations of zero and simple maths is possible) it is popular. Here
the ones complement is made (bitwise NOT to all the digits) and then 1 is added
to the result using conventional binary addition. 0000 becomes 1111 and then
0001 0000 but the other part is ignored.

Examples
Example 1

-1
Postive one is 0001
NOT gives 1110
adding 0001 gives 1111
Example 2

-3
Positive three is 0011
A bitwise NOT gives 1100
Adding one 0001 gives 1101
Maths example
Similar to the example of 0 above 2 decimal (0010) added to -1 (1111) which

gives 0001 0001 and has the leftmost �spillover� ignored.

�Excess 7� Although twos complement and the others will serve you well
and form the bulk of everything you come into contact with there is another
somewhat more complex method in common use. It can vary a bit depending
upon your implementation (the technical/concept name is excess 2^(m-1) where
m is the number or binary digits you have to work with) but excess 7 will be
used for now.

It becomes more complex and somewhat more important when fractional
numbers arise (covered in the section below). In practice it is a kind of combi-
nation of the basic signed magnitude idea and twos compliment. As mentioned
this is sticking with excess 7 for the example but scaling up is fairly logical.

In this system the the �rst bit is used to indicate the sign (although not
necessarily the sign of the �nal number) leaving the remaining 7 (excess 7) to
do what needs to be done. So far not very di�erent to anything covered but this
is where the trick happens although an example before it is covered in earnest.

In years past you might have been encouraged to just make numbers huge
as a workaround for having to deal with negative numbers.

The equation

20

8− 1− 3 + 6 + 9 = 19

A simple equation but with a calculator or in your head it is quite possible
to make a mistake and mess the whole thing up.

Adding in this case ten to all the numbers makes them all positive

18 + 9 + 7 + 16 + 19 = 69

Five numbers all 10 larger makes the result �out� by 50 but plain addition
is far easier to avoid making a mistake in.

The reason for the digression to simple maths tricks is a similar principle
gets used for excess 7.

In the case of the excess 7 (also called 8 bit excess 127) this is usually
01111111 or 127 in decimal. Here the value you want to encode is either taken
(positive numbers) or added to (negative numbers) from this value. In theory,
and so probably somewhere in a game out there, the excess does not have to be
127.

If you prefer it could be seen as counting starting at the lowest possible
number which would be �-(-1 +2^m)� or for 8 bits �-(-1 + 2^7)� which is negative
127 and call that the starting / �zero� value. 0 (as in nought) is then the bias
value. It has the advantage of being easily compared with other numbers so it
is worth knowing about.

Examples
Number to encode -7 or (-) 0000 0111
0111 1111 � 0000 0111 = 0111 1000
Number to encode 18 or 0001 0010
0111 1111 + 0001 0010 = 1001 0001
Examples
0000 0000 -127
0000 0001 -126
0000 0010 -125
0111 1111 0
1000 0000 +1
1000 0001 1111 1111 +128
In practice/the real world this is covered by the near universal standard IEEE

754 which is more commonly seen when dealing with �oating point numbers.
You could make another method but nobody really does and hardware is built to
use it so again nobody does, give or take a few things using �xed point numbers.
Here 32bits or more can be used with the �rst being the sign, the next being
the bias value and the rest being the encoded number in question. Speaking of
fractional numbers though

Fractional numbers and real numbers Fractional numbers are usually
done using a so called ��oating point�, however the GBA and DS do make
extensive use of �xed point numbers for various parts of the hardware including
2d transformations and 3d and will be covered shortly. The idea of leaving
things as values and only calculating them at the last moment is encouraged in
programming but in hardware or the �nal representation this can be tricky and
as that is where ROM hackers spend most of their time it will be noted and
nothing much else said on the subject.

21

Floating point On the face of it �oating point appears related to the excess
7 method of displaying signed numbers, in practice it is actually closer to the
standard scienti�c notation for displaying large numbers. The concept of this
then is the idea of �oating point numbers, in essence they are

1. A sign value

2. A multiplier (actually an exponent) to make sure the �decimal� point gets
where it needs to be

3. The number itself but without the 1 part as that is assumed to be 1 so as
to be able to save a bit.

For 3. above much like you would never write 0.31x10^-3, unless you are an
engineer where the used powers are usually a multiple of three, it is always
assumed the �rst bit is 1, as you are working in binary that means the only
value it can be is 1 and you can leave it out of the number that is transmitted
as long as you remember to reconstruct it.

It probably does not take a great leap of imagination to see how this gets very
complex to operate with multiple values (di�erent �powers� or not) very fast. To
this end even though most software development kits and systems will feature
abilities to handle such things their use is ideally saved for when there is no
other option, indeed newer/high performance systems often have their computer
power compared by how many �ops (�oating point operations per second) or
indeed criticised on their lack of support for various versions of �oating point
(single precision, double precision.....). Unlike binary and hexadecimal above
the ability to decode it is something you should be able to run through but
most will expect you to use tools to handle it.

There is a class of compression based on this idea known as arithmetic coding.
It works on the idea that for the �le might represent it is still a number and
some numbers can can be represented shorter by encoding them as a �oating
point.

The short version
32 bits long the �rst bit is the sign of the multiplier, the next 8 bits are the

value of the exponent of the multiplier in excess 7 notation and the �nal bits
are the basic value that needs multiplying save for the �hidden� 1 value which
the fractional part gets added to.

That is a bit wordy so examples
Decoding 40a4cccd hex
The binary representation is as follows
0100 0000 1010 0100 1100 1100 1100 1101
0 starting means it is positive.
The excess 7 bits
1000 0001
0111 1111 + ???? ???? = 1000 0001
???? ???? = 0000 0010 = 2 decimal (leading to 2^2 or 4)
Taking the remaining section and adding the invisible 1
1010 0100 1100 1100 1100 1101
Much like binary is powers of two the fractional part goes the other way and

decreases in powers of two so taking that pattern and checking o� the pattern
against it.

22

1 0 0.25 0 0 0.03125 and so on
Using just the numbers there 1.28125
Multiplying by 4 gives 5.125
Short of the actual number it is supposed to represent which is 5.15 but if

you continued adding numbers from the binary pattern it would get very near
there.

Representing 3.14
Positive so �rst is 0
Dividing by 2 renders it as 1. something and 2^1 = 2
2 in excess 7 is 10000000
0.57 is the number that needs representing.
0.5 + 0 + 0 + 0.0625 and so on
For now stopping there
10010000000000000000000
Working back through leaves it at
01000000010010000000000000000000 binary or 4048 0000 hex
Decoding that though gives 3.125 so the pattern should have been continued

further
In practice it ends up as
10010001111010111000011
Which combined with the rest gives
4048f5c3 hex.
The slightly longer version
Single precision (32 bits) and double precision (64 bits) are the most com-

mon versions of �oating point with anything beyond that (save perhaps quad
precision in some hardware) usually being relegated to (very slow) software
methods.

Also the exponent values in theory at least range from -126 to 127 (00000001
and 11111110) meaning the all 0 and the all 1 values are not available. In
practice these are used as follows

0 All 0 indicates exact 0 or more accurately values smaller than the lowest
feasible value.

1 All 1 indicates either positive or negative in�nity for the all 1 values assuming
the mantissa section has nothing in it. If the mantissa does have something
in it then it means an error like divide by 0 or something similar (NaN
aka not a number).

For more IEEE �oating-point representations of real numbershas a basic overview
and What Every Computer Scientist Should Know About Floating-Point Arith-
metic has a far more in depth discussion and historical analysis. If you just want
something to toy with to get it sorted in your head FloatConverter is quite good.

To make up for some of the shortcomings of the method there are two com-
mon functions that are used when dealing with such things.

Ceiling In short round up to a given value (or multiple thereof) regardless
of what a conventional round would do. Not necessarily limited to fractional
numbers either.

23

http://www.math.grin.edu/~rebelsky/Courses/152/97F/Readings/IEEE-reals.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://www.h-schmidt.net/FloatConverter/IEEE754.html

Floor In short round down to a given value regardless of what a conven-
tional round would do. Also not necessarily limited to fractional numbers.

Fixed point values Floating point is used everywhere in computing (espe-
cially in 3d and mapping of things in 3d, something you may have seen the
occasional game do) and it is quite costly in terms of resources so �xed point
appears.

Fixed point attempts to work around some of the issues with �oating point
at the potential cost of some accuracy and some �exibility. It is seen in parts
of the DS 3d system among other things where 4 bits �natural number� 12 bits
�fractional� is often of the order of the day. That is to say the computer assumes
all numbers after a given binary digit are fractional. Some instead prefer to view
it as a range type function with 0000 to 1111 representing the di�erence between
two whole numbers (or in the case of sine and cosine -1 to 1).

Timers are quite commonly made like this although they can also just be a
multiple, the �timer� used for the DS SSEQ audio format being a good example
of the latter.

What the numbers mean is usually either the logical extension of the binary
�powers� (2^-1=0.5 decimal, 2^-2 = 0.25 decimal.....) or they count again and
the number after the point is e�ectively assumed to be a normal number. Binary
coded decimal, almost invariably in the 8421 arrangement, can also appear here.

As with signed values their use prevents the number from being read as a
simple integer and used in simple maths although with a bit of shifting, rotating
and such you can get quite a bit done and even do some basic comparing and
maths. Speaking of shifting and rotating

1.2 Hex operations

Hexadecimal is just numbering but there are common things done to it that
�le formats use, the internal logic of the computer will use and can be used to
quickly and easily manipulate something that needs manipulating.

1.2.1 Shift

Right hand and left hand shift then and useful when you need to chop o� a
bit from a value, you need to generate a value where you can not �t it into a
smaller length than the destination or in some formats which leave things in
an unshifted form for whatever reason. In practice 32 bits allows for a lot of
address and 31 bits can still quite easily handle most GBA and DS addressing
needs so the upper bit can be used to indicate things as indeed NARC �les do
so as to indicate a subdirectory. Moreover lots of the DS internals only need a
few bits for things they do so they are combined with other sometimes unrelated
things which you might need to lose to see what is going on. In a hex editor you
would probably be better advised to use Boolean logic (covered in a moment)
rather than shifts but in hardware it can go either way.

A shift can be right hand (you shift the numbers to the right losing the
leftmost piece of data) or you shift to the left losing the rightmost piece of data.

It is also useful as a quick multiplier (think how you technically shift the
numbers when you multiply or divide by 10 in decimal).

24

There is also the distinction of logical shift and arithmetic shift where in the
case of the latter you do not lose the data if you shift left and then shift right.
You can also do block shifts but they are just a special case which usually means
a given number of bits are shifted.

1.2.2 Rotate

Related to shift but where you lose data if you shift it appears in the other side
when you rotate.

1011 rotates left by 1 bit makes 0111

1.2.3 Flip

Flip is most useful when you are working around big and little endian. It was
already seen when big and little endian were covered above but a 32 bit �ip of
A036 0104 reads 0401 36A0.

In some cases it can be useful to �ip larger or smaller values, for instance
although many formats will use a full 32 bits for a length the �le might be very
short and only need the �rst 16 bits. More useful (and not often a function
of hex editors) the GBA 4BPP image format uses 4 bits per pixel but will �ip
them between storage and being on the screen.

In the �gure below you can see the hex that represents the highlighted tile
(it is the icon from the wi� version of Yakuman DS, a competitive Mahjong
title).

� In the �rst line you can see 0000 D0DD where the pink pixels (in practice
they would be transparent but more on that when graphics are discussed)
which are represented by 0 in this case run for 5 pixels.

� In the next line you can see 4 pink pixels as they are but then the grey
pixel (in this case D) is after the F value which represents the white pixel

� In the next line you can see the cream coloured pixel (E) be second to last
as opposed to actually last. It it done because that is how the hardware
works/expects things but it can make it tricky if you are trying to simply
edit it.

25

1.2.4 Boolean logic

Often a more useful set of techniques than basic shifts and the other operations
covered already. There are several types although you will probably see patterns
soon enough (mainly that the NAND, NOR and XNOR are just the inverse of
their counterparts). Boolean logic exists in two big areas ROM hacking and
related pursuits might be concerned with; one is programming and the other
is electronic logic where they perform identical functions but in some ways are
thought of a bit di�erently.

Here is probably useful to discuss the idea of high and low as it applies to
computing and electronics. In the vast majority of cases (especially software and
ROM hacking) you should always assume that unless otherwise stated a high
value corresponds to 1 and a low value corresponds to 0. This is unlike some
other things in this section where you will usually want to seek clari�cation for
things (what method of negative or point numbers you are using for instance).
There is however a variation on this called negative edge logic (referring to
certain chips that change on the falling edge of a clock pulse) that can be
described with the opposite where 0 is high and 1 is low.

Examples will be done in binary.

NOT aka inverse Does what it says and �ips every bit.
1001 1110 becomes 0110 0001

AND Here you take two numbers (preferably of equal length but if not the
shorter sequence is repeated as appropriate in most cases) and combine the
outcome so that only if both inputs are high the result is high

1100 1111 AND 1010 0100 becomes 1000 0100

NAND Much like AND you take two numbers and put them together but
rather than if both are high this is if both are low. It is most useful as it is a
fundamental logic operation; you can stack NAND operations or indeed NAND
gates in such a way that you can make any other Boolean operation.

1100 1111 NAND 1010 0100 becomes 0111 1011

OR Again two numbers but if any one of the inputs it high the result is high.
1100 1111 OR 1010 0100 becomes 1110 1111

NOR Two numbers but only high if both inputs are low
1100 1111 NOR 1010 0100 becomes 0001 0000

XOR Two numbers but only high if only one input is high. Useful as en-
cryption by itself and the basis of many more useful encryption methods. As
a quick aside there are serious downsides when it comes to actually being used
as encryption, if done properly it is one of the few that can not be broken with
enough computing power. Also where the others can easily have multiple inputs
in electronics a multiple input XOR is tricky at best.

1100 1111 XOR 1010 0100 becomes 0110 1011

26

XNOR Two inputs, only high outputs when none or both inputs are the same.
Being the inverse of XOR it has similar problems to it.

1100 1111 XNOR 1010 0100 becomes 1001 0100

Discussion of Boolean logic. The most useful in day to day ROM hacking
are probably NOT, AND, OR and, purely because of the encryption, XOR.

NOT aka inverse is useful on many occasions for many things especially in
graphics (it might not be quite that simple in practice but inverting colours is
quite common). Also useful to corrupt data and recover it easily (you just invert
it back).

AND is useful to remove certain bits, for instance if you want to remove the
highest bit in a byte just AND the result with 0111 1111 and whatever the rest
is will stay the same but the highest bit will be 0 regardless.

OR is useful if you want to set a certain bit high, for instance to set the
highest bit in a byte high just OR the result with 1000 0000 and the �rst bit
will be set high regardless but the rest will only be high if they were to begin
with.

XOR is also used a few times in the internals of the GBA and DS and is
used extensively as simple protection at points in cheat devices and things like
the GBA e reader.

An aside on logical/relational operators They share the same name and
broad function as the boolean logic but here they are used as checks to see if
both inputs meet a given condition. In C type languages it runs as follows

AND checks to see if both inputs are non 0 and returns true if it is the case
OR checks to see if just one input is non 0 and returns true if it is the case
NOT merely reverses the output of the other functions.
As far as most of ROM hacking is concerned this will usually be interpreted

closer to assembly where compares and branching will be used instead.
Equally a right hand logical shift is di�erent from a conventional right hand

shift in that it will retain the most signi�cant bit
1000 1110 right shifted by 1 makes for 1100 0111

1.2.5 Hex Mathematics.

Some people can operate in hexadecimal but most of the time the maths resem-
bles long division and long form maths. It is quite useful to know as... quick�re
round what is 9 + 3 in hex.

The answer is C but courtesy of probably using decimal all your life your
immediate thought might well have been 12 which could well mess your entire
hack up if you put that into the ROM.

Subtraction works much the same way until you get to negative (signed)
numbers in which case you get to �gure out what method you are using for it.

Multiplication is easy enough
1D x 09 is 10 x 9 + 0D x 9 or 90 + 75 = 105
Division is a pain and more importantly depends on the programming lan-

guage function used; many basic methods will chop o� the stu� after the �dec-
imal� point where others will turn it into a �oating number. Floating point
might not be that accurate as hex is somewhat less capable of displaying the
results of common divisions, not to mention it will be rounded at some point.

27

Such a trick is often used to confuse, and so teach, new programmers and even
catches out older ones; �nance packages are especially troubled by this for if
they miss a couple of rounding points it can result in big amounts of money not
going where it needs to go. There are however a few concepts worth noting as
they crop up in programming languages and the processors they run on

Mod As mentioned some basic hexadecimal divide functions will leave you
with just the whole number part of the result (99 divided by 6 is 16.5 but many
divide functions would just give you 16). Mod is then a function that gives you
the remainder as a whole number (99 divided by 6 is 16 remainder 3) which
you can leave in the hope it will be multiplied back later or feed to another
command (many divide functions struggle with large numbers and prefer small
ones).

Abs(olute) Potentially confusingly regular maths sometimes also calls this
modulus with the shorthand sometimes being �mod�. Depending upon how far
you want to take maths it can get quite complex but the short version is abs
value of a number is just the number (always positive) without the sign. It is
then quite useful to feed into functions so you can simplify them or the resulting
maths.

1.3 Patching and patch making

ROM hackers change ROM images, copyright lengths being what they are it
means such things are copyrighted code. Even edited code still has protections
so the di�erences between the versions are found and made into a patch �le,
such a thing will also have the very nice bonus of tending to be far smaller and
easier to transmit. Patch �les then allow someone to take the original ROM,
apply the patch to turn it into your changed version and then play it. As with
most concepts you can use a computer to help out and, also like most concepts,
there many methods by which you can create and apply patches. However unlike
most other times where you need to decide between competing formats there is
more to it than token di�erences and vendor lock in. Each type is linked to the
best example/implementation at time of writing with a couple more at the end
if there are others worth noting.

� IPS. The original ROM hacking patching method of choice. It is a truly
basic format (the basic form contains a magic stamp/value, a list of patches
to apply (which consist of a location, length and payload) and a signal
for the end of the �le) although there are a few custom versions that
are not widely supported. It can not handle location changes which is
not a problem for older consoles but with consoles that have �lesystems
(which is to say most optical media using and post GBA consoles) it is a
dealbreaker. It is also limited to �les of 16 megabytes in size or less, again
this is not a problem on older consoles but even the GBA allowed code up
to 32 megabytes to be run.

� UPS. Made as a direct successor to IPS it has found some use in older
consoles and later GBA patches but came a bit too late and the patching
methods below had stolen the spotlight. Upset, Tsukuyomi UPS and
NUPS are all good tools for UPS.

28

http://home.arcor.de/minako.aino/ipsXP/
http://www.romhacking.net/utilities/519/
http://www.romhacking.net/utilities/677/
http://www.romhacking.net/utilities/519/
http://www.romhacking.net/utilities/606/

� PPF. Made originally to patch PS1 games (Playstation Patching Format
being the longer form) it went through a few revisions and as such some
are wary, however it saw some use on the Wii and continues to kick around.
Size limits are not really a problem (it is unknown what the upper limit
is) and shifts are handled OK. PPF-O-Matic is a nice GUI patching pro-
gram and the original PPF program should provide a nice multiplatform
patching and patch making alternative.

� Xdeltaand BSDi�. Both general patching formats (indeed they tend to
position themselves as rival formats) that got used for the DS and newer
consoles (ROM hackers have tended to favour Xdelta where BSDi� saw
more use in the form of Scene trainers and patches). Shifts are handled
well enough (although they might not be perfect) and sizes are not likely to
get to a limit any time soon (although some implementations of BSDi� are
rather low). Features some support for original �le checking and hashing.
The current version of Xdelta was linked but there is an older version that
was used for a while and there have been some compatibility issues.

� Ninja. An earlier candidate to replace IPS and fell out of favour for various
reasons. Some patches have been seen to use it and in many ways it works
quite well.

� PAR2. Not a patching method per se and more of a corruption detection
and data recovery format. Changed data is no di�erent to corrupt data
as far as it is concerned so can patch programs though it has some trouble
with data shifts. Better yet though assuming you have enough redundancy
you can be certain your patch will make the original ROM into exactly
what you need which is quite useful when there are various corrupt or
otherwise modi�ed dumps out in the wild (headers on SNES ROM �les
for instance).

� Custom. There were some other formats made for various things (Jump
Super Stars for instance) and others aimed at more speci�c things (Fire-
�ower is a patching format aimed at certain graphics hacks for instance)
but those will not really be covered here. Some people decided to un-
pack the ISO/ROM �les, patch those individually and build a ROM/ISO
afterwards. This made for the smallest patch sizes, usually got around
the issue of �le relocation, made for some of the best compatibility with
various ROM versions and the gave the option to have various options for
the patch; a graphics translation might translate graphics that are for the
most part decorative, rather than having to make an executive decision
you can just make an option at the patch level. The main downside is that
it might well be platform speci�c, require multiple batch �les to be made
or require runtimes to be installed. Can also help where �les are encrypted
or compressed and by making a patch you are still technically redistribut-
ing code that does not belong to you (encryption and compression looks
like di�erences to a basic compare function).

Some people took this custom format concept a step further on the Wii and some
other consoles by making a kind of jump loader using a dashboard/menu level
console hack to apply a patch to a game's data when it was held in memory.
This also had the added bonus of allowing those with the original game and

29

http://www.romhacking.net/utilities/514/
http://filetrip.net/pc-downloads/applications/download-ppf-o-matic-30-f29416.html
http://www.romhacking.net/utilities/353/
http://xdelta.org/
http://www.daemonology.net/bsdiff/
http://www.evanjones.ca/software/xdelta-win32.html
http://www.romhacking.net/utilities/329/
http://www.quickpar.org.uk/

an otherwise unhacked Wii to play the hacked game. Nintendo would do a
similar thing to patch a bug in Wii sports resort as the Wii lacks a real patch
management feature like the 360 and PS3.

1.4 File systems and operations

This section will detail the tools and general methods of operation of said tools
to pull apart/unpack/extract ROM images. It will probably also be the only
section to cover systems other than the GBA and DS in any real detail. The
general form of this section is device name, name of method by which hacked
code can be run and whether it can be emulated, the names/extensions/types
of binaries, any hardware documentation and �nally techniques to parse �le
systems. For additional information or information on systems not covered
here then the main sources of hardware information and such like are typically
homebrew developers, those wishing to run various �avours of Linux on consoles
and emulator authors.

1.4.1 Non �lesystem devices

Method - usually �ash carts of various forms which may not exist in an up to
date form or be quite expensive if they do exist. Emulation is usually available
and very high grade if you want it to be and beyond that everything up to the
late 16 bit era and slightly beyond can usually be emulated on newer consoles
and handhelds at some level.

As the GBA is a focus of this guide it gets a proper section but in general
devices that are older than the DS or do not use optical media will tend not
to have a �lesystem, this means you get to employ various techniques covered
in the GBA section below. They are frequently directly accessible in memory
but other than the GBA often have quirks you have to address (mappers in
the NES, hirom and lorom in the SNES and Memory Bank Controllers on the
original gameboy and GBC). It should be noted that these quirks often a�ord
serious extra capabilities but as well as being hard to deal with they are often
extremely di�cult to add or remove from a game.

Today other than the GBA you will tend to only encounter a lack of a
�lesystem when editing the executables for things (although that is not a cer-
tainty) and if you get into editing the security/secondary processor/hypervisor
programs for the consoles (things like IOS on the Wii and security code for the
PS3 Cell coprocessors).

romhacking.net maintains a database of hardware information for older con-
soles and some newer ones. You may also like infrid.com for the N64.

1.4.2 GBA

Method - �ash cart or emulator.
The GBA is self contained but the executable location (or start thereof and

start of the useful stu�) is easily found.
GBAtek and CowBite are usually considered to be the top hardware doc-

uments, some more speci�c documentation for certain hardware areas like the
audio setup also exists.

30

http://www.romhacking.net/?page=documents&category=12&platform=&game=&author=&perpage=20&level=&title=&desc=&docsearch=Go
http://infrid.com/rcp64/documents.php
http://problemkaputt.de/gbatek.htm
http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm

Aside from some homebrew the GBA does not really feature a �le system
meaning there is not really such a thing as exploding the ROM image into a
group of �les it is composed of. There is an advanced technique known as tracing
though that can �nd where any data is located in the ROM and a handful of
simpler, though sometimes less e�ective, variations on the theme (BIOS SWI
call logging and pointer �eld searching) that will be covered in the appropriate
sections.

Some tools like those seen in Atrius' Golden Sun editors contain searching
routines for sub�les, compression can be searched for with various tools, the
GBA �sappy� audio format such that it is can be detected in some cases and
more general tools for games like Pokemon will also contain a listing of the
location of various game components (or the things that point at them) as
might some other games. Other than �ash carts, some undumped ROM images
(full length videos) and some of those 30 in 1 carts you �nd in tourist traps the
whole cart is visible in memory at all times and that means the space limit is
32 megabytes.

1.4.3 DS

Method - �ash cart or emulator. DS and DS lite run GBA code natively if you
have a GBA slot cart.

The executable formats for the DS are ARM9, ARM7 and overlay �les that
usually come with the extension .bin and sometimes SRL.

GBAtek is the main reference document for hardware for the DS.

NDStool NDStool on �letrip Command line and very quick and easy but fails
to rebuild certain ROM images properly (most still work).

Nitroexplorer Nitroexplorer �letrip Built to make up for shortcomings in ND-
Stool methods. Short of manual editing the go to tool for most.

NDSTS No-Intro tools page Able to extract �les and insert �les of the same
size (you can pad them if you want), if it crashes when you have edited it
where it worked before with this then it is de�nitely your fault.

Crystaltile2 Crystaltile2 �letrip Able to parse the DS �le system as well as
extract individual �les. Support at this level for compression as well as
certain container �les as well as support for all sorts of known formats and
additional functionality. Click the DS icon on the the icon bar to open
the viewer.

Tinke Github link A tool similar in capability to Crystlatile2 and also supports
decompression of �les, in ROM and extensive support for other formats.

The DS �lesystem is well known and well understood so you have many more
options here, indeed it is usually the �rst feature aspiring DS ROM editing tools
gain. DSi compatible games can usually be parsed by standard tools and DSi
speci�c code should now have relevant keys to help things there although it
can not really be run. Most games will have archive formats for a handful of
�les stacked on top but a handful of DS games have been observed to use large
single archives for all or most of their �les with the �les not put into the archive
usually being download play components, sound or video.

31

http://problemkaputt.de/gbatek.htm
http://filetrip.net/nds-downloads/utilities/download-nintendo-ds-rom-tool-ndstool-1501-f29352.html
http://filetrip.net/nds-downloads/utilities/download-nitroexplorer-2b-f7301.html
http://www.no-intro.org/tools.htm
http://filetrip.net/nds-downloads/utilities/download-crystaltile2-20100906-f23649.html
https://github.com/pleonex/tinke/

Most usage will be covered or fairly obvious save for ndstool which has a
basic extraction command like

�ndstool -x *.nds -9 arm9.bin -7 arm7.bin -y9 y9.bin -y7 y7.bin -d data -y
overlay -t banner .bin -h header.bin�

Replace the -x with -c and the *.nds with a valid name and you can recon-
struct a ROM. NDStool is not that useful for end stage hacks but quite useful
for quick tests. �ndstool -l *.nds� will make a �le listing of the �les inside a
ROM and their locations.

1.4.4 3DS

Various hacks, though things are frequently in a state of �ux as it is a modern
system that can be updated. Trend is towards custom �rmwares, though �ash
carts also exist. Decryption of whole games is possible, see XORpad and such
like, and may have standalone methods before long. Decrypted ROMs may be
avaialable online and some �les can be obtained from memory dumps.

Running modi�ed code is well within the scope of the hacks capable of
running copied versions of the games.

3dbrew is the main documentation on the 3ds hardware. A quick overview
says it shares a lot of its history with the DS but it is also somewhat closer to
a full modern computer architecture (hypervisors/kernels, segmented memory
and the like), also features an opengl like implementation of 3d.

1.4.5 GC (gamecube)

Method - mod chip and miniDVD/modded case and regular DVD, SD loader,
IDE adapter. Emulators demanding but viable.

boot.dol is the main executable format.
Hitmen YAGCD is generally considered the better gamecube hardware doc-

ument.
GC tool
GCM utility(mainly multiboot rather than iso handling).
Gamecube ISO tool

1.4.6 Wii

Method - Softmod loading from external USB. Modchips and some softmods
support gamecube. Emulation demanding but viable.

Wiibrew houses the main collection of hardware information and information
on software internals although there are others that move more into formats and
editing of internal software.

.dol is again the main format although ELF appears in homebrew.
Wii games and �les come in two original �avours and one used by some iso

loading types.

Discs Several tools available but Wii scrubber will be the method of choice
here

Wii scrubber �letrip download
You might however also consider Wiimms ISO Tools for a nice command

line alternative and support for some of the custom formats that became quite
popular on the Wii.

32

http://gbatemp.net/threads/3ds-cwav-dumper.361437/
http://3dbrew.org/wiki/Main_Page
http://hitmen.c02.at/files/yagcd/yagcd/frames.html
http://filetrip.net/wii-downloads/other-files/download-gc-tool-120-beta-f818.html
http://filetrip.net/wii-downloads/other-files/download-gcmutility-05-f606.html
http://filetrip.net/wii-downloads/tools-utilities/latest-gamecube-iso-tool-f28774.html
http://wiibrew.org/wiki/Wii_Hardware
http://filetrip.net/wii-downloads/other-files/download-wiiscrubber-kit-with-multiloader-140-f4399.html
http://wit.wiimm.de/

Virtual console and Wiiware aka WAD �les Not to be confused with
doom wad �les.

One of the former tools for this was WWpacker but better examples exist in
libwiisharp example binaries. Simple tools but can unpack things well.
showmiiwads. A GUI tool featuring the ability to unpack wad �les and deal

with common things done to the �les they contain after that.
Many titles also nest things in a format known as u8 (and often combine

it yaz0 compression) but both of those tools can extract, decompress and deal
with that as well.

https://github.com/BtbN/libwiisharp
showmiiwads github page

HDD Most people do not use whole iso images or the minor tweaks to them
any more and will instead use a USB hard drive and maybe a custom format.
These come in various formats and layers of support but WBFS is the main
method that is often stacked on top of FAT or NTFS �lesystems. Wiimms ISO
Tools linked above have a measure of support for some of this.

1.4.7 Xbox

Method - Softmods and hardmods both using minor variations on the idea of
internal hard drive or copied DVDs. Emulation not really game playing grade
for most things but getting better, the 360 does feature a measure of hacked
xbox game support when properly hacked.

The executable format for the 360 is xbe �les.
As with most things here there are several options although three go head

to head here.
C-Xbox tool
Qwix
Craxtion
Filetrip download (all three)

1.4.8 Xbox 360

Method - no real softmod. DVD mod (does not allow altered games, XBLA
or DLC unless combined with one of the following methods), JTAG (required
older hardware) and RGH (can be done on most hardware though later updates
can be harder to work around) lead to onboard and USB loading. Emulation
nowhere near.

Free60 features a lot of hardware information.
Xbox 360 games come in two broad �avours with a third method mentioned.

The executable format for the 360 is .xex �les. These can be extracted further
(they are based on the Windows PE/portable executable format used in exe
and dll �les).

Xex Xextool and xextool GUI are tools that can help here. They can unpack
the format, apply various patches both to the �les themselves and apply the
title update patches.

Xextool �letrip download
XextoolGUI �letrip download

33

https://code.google.com/p/libwiisharp/
http://code.google.com/p/showmiiwads/
http://libwiisharp github page
https://github.com/Plombo/showmiiwads
http://filetrip.net/oldies-downloads/xbox/iso-hacks-tools/
http://free60.org/Main_Page
http://filetrip.net/360-downloads/iso-tools/latest-xextool-f29383.html
http://filetrip.net/360-downloads/iso-tools/latest-xextool-gui-f29384.html

Discs Various programs will extract things, including the ISO checking tool
known as ABGX360, but many are unwieldy so e-xiso is the main go to method.

Extract xiso homepage
Filetrip download
GOD and NXE/hard drive installs have come from discs and have but a few

bytes di�erence between each other. They can be made back into more or less
unusable isos with GOD2ISO.

XEX �les are the binaries of the 360, there can be several. Patches exist in
the form of title updates and can be applies to the XEX �les if you really want.

XBLA/DLC PIRS, LIVE and CON. PIRS are signed by MS and can be
installed on any 360 without issue. They are mainly sourced from Bethesda
game of the year and Borderlands double pack games but there are several
more.

LIVE is the format of XBLA and DLC. XBLA demos are full games but a
little string is swapped to allow play of the full one (naturally this breaks signing
and needs a developer or JTAG/RGH box to run it).

A related set of formats and usually handled by all the same tools. Le Flu�e
is one of the main ones.

Le Flu�e download page
Filetrip download

USB Not really a format but one of the main methods of access so it is noted.
Later in the life of the 360 Microsoft added support for a custom USB format
(in practice it was a reserved section of a USB drive). XTAF.

Supported by several tools but USBXTAF is the main method.
Filetrip download

1.4.9 PS1 and PS2

PS1 - modchip. Emulation available for many years, though can be tricky if you
venture into the often superior plugin based emulators.

Playtown has a lot on the PS1 (mainly in Japanese). The romhacking.net
link from other systems has a bit of information and psx.rules.org has some
more.

PS2- modchip and some softmod driven network/USB loading possible. Em-
ulation demanding but viable.

philvaz.com has some good information on the graphics hardware and some
internals. scee.net (warning PDF link) has a nice introduction as well.

ISO 9660 was for many the order of the day but later games on the PS1
and many on the PS2 added a dummy setup to that and instead made a new
�lesystem later on and/or read addresses directly from discs.

For the most part the PS2 was also a standard iso 9660 image that countless
tools from the likes of 7zip upwards can open but certain games (most notably
Square Enix games for music) used raw LBA reads or a custom �le system to
read certain parts of the iso images in question. There are a few tools that
attempted to detect the signature of the music �les and occasionally within the
whole image.

LBA reads were also used in anti piracy protection for many of these games.

34

http://alecsis.free.fr/Extract-xiso/
http://filetrip.net/360-downloads/iso-tools/download-e-xisogui-1007-f28976.html
http://skunkiebutt.com/?page_id=362
http://filetrip.net/360-downloads/other-files/download-le-fluffie-690025-f28975.html
http://filetrip.net/360-downloads/hdd-tools/download-usb-xtaf-xplorer-44-f23780.html
http://www.geocities.co.jp/Playtown/2004/psx/
http://psx.rules.org/psxrul2.shtml
http://www.philvaz.com/games/PS2.htm
http://research.scee.net/files/presentations/agdc2002/PS2forPCprogrammers.pdf

Both use a version of the executable formats known as ELF as their exe-
cutables.

1.4.10 PS3

Method various- softmod (maybe with hardware trigger) leading to USB and
hard drive loading. Emulation nowhere close.

Technically the PS3 uses a version of ELF for the executables.
ISO
PUP �les (updates)
DLC and PSN content.

1.4.11 PSP

Method - softmod loading from memory card (o�cial Memory Stick PRO Duo
or microSDHC adapters available) or loading from onboard storage (PSP Go).
Emulation more possible than before but undeveloped compared to many other
systems.

PSPMIPS R4000 processor (warning PDF) is a system developer level break-
down of the PSP processor.

Executable format pbp format (usually called eboot.pbp).
There are a few tools here but UMDGen is the dominant one and there is

little reason to use another. It supports extraction, insertion of any length,
rebuilding the �le locations table and relinking �les as well as creation of com-
pressed images.

Filetrip link

1.4.12 Saturn

Method- Modchip for the most part. Emulation surprisingly good, though the
architecture of the Saturn means emulation is demanding for the relative age of
the system.

Yabause (one of the more popular emulators for the Saturn) has a fair bit
of hardware information.

A slight variation on the iso format although doable with standard tools.
Guide involving the manipulation of saturn �les

1.4.13 Dreamcast

Method - Simply insert copied disc or use a disc loader known as �Utopia�.
Emulation not bad for some games.

Disc image handling varies. CD burners were a new concept when the DC
was released and there were lots of competing formats for optical media, you
will then want a standard iso tool to explode it into the component tracks (the
good stu� is typically the third track onwards). The tracks function more or
less like standard isos, save for the fact that they are o�set and most normal
iso tools can not handle this as is. Fortunately Iso LBA Fix (iso�x) by DeXT
exists and will change the LBA to start from zero at which point everything will
handle it.

dextremes.com has links to some information.

35

http://www.ppsspp.org/
http://groups.csail.mit.edu/cag/raw/documents/R4400_Uman_book_Ed2.pdf
http://filetrip.net/psp-downloads/tools-utilities/download-umdgen-400-f6743.html
http://wiki.yabause.org/index.php5?title=Main_Page
http://www.rockin-b.de/saturn-patching-enemyzero.html
http://dextremes.com/dc/data/index.html

1.4.14 Amiga

Method - copied discs. Emulation well developed.
ADF images are the most common (ADZ are just zipped versions of ADF)

but being sourced from �oppy discs they tend to have a �lesystem.
amigadev has a lot of top quality information.
UnADF should allow you to unpack ADF images.
Unadf homepage
Filetrip link

1.4.15 PC and related hardware.

Method- you control the hardware so disc emulation, cracked executables or
method emulation (see Steam emulation)......

Various executable formats depending upon development language and op-
erating system.

A tiny bit more on PC hacking is mentioned later but for simple unpacking.

PE Windows main format is the PE format which is usually known by the
extensions exe and dll. This can be unpacked with many things including
the likes of 7zip.

ELF Used as the basis for a lot of executable formats (including many of the
consoles covered elsewhere).

Iso Broad term for images of optical discs (and sometimes other things) and
there are various formats for it (many things will be called iso and burn
as one but be unable to be extracted). Can be extracted by many tools
including 7zip and Ultraiso (paid software)

Batch/bash Most operating systems provide a command line where commands
can be typed and layered on top of this is are the concept of small text
scripts that can do fairly extensive things but in practice are just a list of
commands with a few extras.

Scripts (Python, lua, Java, visual basic and many more). Many programming
languages operate outside the realms of the standard executable (or have
it for a wrapper) and can have their original code, or something close to
it, recovered by various means.

SD/CF/XD A points you may have to copy a SD,CF, XD or some other
memory card at the sector by sector level. On these occasions there is a
program called DD which is popular on linux and has a Windows port
too.

1.5 Finding the object of your interest.

Games come as ROM images, or if they come from optical media originally then
ISO images, but common to both is that they are one large lump of code. The
previous section took care of methods to pull apart these initial �les but that is
only the start of things as you will want to �nd the relevant �le or section that
houses the thing you want to look at or change.

36

http://amigadev.elowar.com/
http://lclevy.free.fr/adflib/unadf.html
http://filetrip.net/pc-downloads/applications/download-unadf-10-f25764.html
http://www.7-zip.org/
http://www.ezbsystems.com/ultraiso/
http://www.chrysocome.net/dd

There are techniques here ranging from the obvious to the subtle, from
the basic to the complex and from the crude to the precise and many will be
useless to you without knowing several other things detailed elsewhere in this
document. Many ROM hackers starting out will see the more advanced methods
of locating data and panic but for the likes of the DS and most other �le system
sporting devices the main method people use to �nd the �les they want is the
�le names (most games feature them even if they do not use them directly), �le
sizes and extensions either directly (English.bmg might well be the text in a DS
ROM) or indirectly (sound_data.sdat will probably be the sound so you can
eliminate that chunk from your search for the text for a game which is doubly
nice as sound is usually a good portion of space in a ROM) with a quick look
at directory names alongside that (sound will probably contain sound, 3d will
probably contain 3d and dwc\utility.bin is probably download play2).

Alongside this there are several known extensions and header values for var-
ious formats where the �rst few bytes decode as a known ASCII or hexadecimal
string. Many more examples later but for now sdat is an extremely common
sound format on the DS and bmg is a fairly common text format. It should
be noted that extensions can often give away the presence of compression with
common examples being if a �le ends with �.l� , �.lz�, �._� or something along
those lines, especially if it has another known extension before it, then it might
well be compressed and you can act accordingly.

ROM corruption should also be mentioned here. It gets a bit costly to do
if you have to burn discs each time but when emulators and �ash carts are
available you can corrupt a part of the ROM, run it and when it errors or
crashes you get to see what parts do what. The simple method is to use one of
the hex operations you learned about earlier but there are dedicated corruption
tools. Likewise the technique might need to be re�ned for certain things as
things like graphics can only use a select series of values that the corruption
tool might inadvertently use. You can also re�ne the concept to a point where
alteration is probably a better term, for instance when trying to �gure out how
text is encoded it can be useful to repeat a value or sequence rather than using
random garbage.

After this you start heading towards more programming level techniques like
relative searching which uses the fact that in Roman character using languages
A is followed by B which is followed by C and so should you know the word
CAB is in a ROM you can search for a string what has one value followed by
a value two less than it and that followed by a value one less than the opening
value (although in practice a longer search term is more useful).

Tracing is understood to the be the ultimate method and it is still quite
di�erent to simple hex analysis and �le names, however it is not that hard to
follow along with the basic idea. In tracing you �nd the thing you want to look
at in the memory (if it is on the screen or coming out of the speakers then it
is likely in memory), �nd what put it there, �nd where that was told to look
and so on until you have the location of the �le in the ROM or enough data to
�nd it, and possibly also the means by which it is all decoded. Naturally it is

2The download play component of a ROM sometimes acts as a cut down version of the
main game but pulling it apart and using data gleaned there to attempt to reverse engineer
the main ROM is not that useful. It can sometimes net nice artwork maybe provide a few
more example �les but it is not the �rst port of call when reverse engineering a DS ROM for
most.

37

quite an involved technique but very accurate and very reliable. When dealing
with PC games and to a lesser extent with some emulators you can observe
which �les are open and loaded when running the game but this is not always
available/viable for the consoles. There is the lesser method of watching BIOS
calls (BIOS often being used to handle compression can lead you right to the
location on the GBA) and you can do things like search for a �eld of pointers
(on the GBA this often means a list of 08 with 3 bytes afterwards as the most
common GBA address is of the form 08XXXXXX) which can help.

1.6 Abstraction

Certainly a topic worthy of a document all to itself the main idea here is related
to the jargon earlier. Coming at the cost of not being immediately accessible
to all (or in this case the computer in question) you build a method by which
to interpret something into a format understandable by a target, in this case
usually the console in question which translates it to a usable format. Such a
move obviously has speed penalties, the bonus however is that you can use a
simpler method to store, deal with and hopefully change your chosen item as
necessary.

Programming languages are all about this as they all attempt to move away
from a user feeding the computer a string of 1s and 0s. A nice example might
be to compare the GBA and DS for if you recall the GBA lumps everything into
one �le where the DS can explode a ROM into a series of other �les. Now if
you want to add a section of code to the GBA you either change all references
to everything after the section you are increasing in size accordingly (a very
tedious process that nobody ever does) or add to the end of the ROM (or some
other blank space). On the DS your ROM rebuilding tool simply adds the extra
to the locations of the subsequent �les (and other sizes as necessary) and as
the �les are not usually tied to each other as whole (obviously �les can work
together on occasion) nothing is troubled. However when compared to the GBA
it does mean the DS will have to do an extra step when it comes to running
the ROM to �gure out where to point the read command. Much like a uni�ed
theory of physics there exists a theoretical but perfect level of abstraction that
you could feed an initial value into and have it run accordingly but much like
physics you occasionally want to get some actual work done so you cut it o�
and possibly simplify/restrict things so as to set about getting that something
done.

Related to this is that not all the data you see in a ROM will be used in
it. For instance any �le names contained within sub�les or occasionally even
the �les themselves might be completely irrelevant, as might be some of the
pointers/size values. Generally though it pays to know and understand what
each value might mean and account for it as you edit the �les unless you can
demonstrably prove it does not matter.

This also applies in reverse with some developers choosing to hardcode val-
ues somewhere despite not having to or it even being all that good from a
programming quality standpoint (as a ROM hacker you might well have to �x
several bugs introduced in such a manner); remember that game programmers
are people too and are no strangers to the hack something together and knock
o� for lunch routine.

If a rule of thumb has to be made it would be understanding the level just

38

above the thing you are trying to do will tend to be bene�cial and such a logic
underpins a lot of the content of this document.

1.7 Tools of the trade continued

The following simply lists some example tools as there are usually several options
for a program to tackle a task, some very basic usage and some screenshots where
necessary. In the case of large tools or area speci�c tools the proper usage will
be covered in other parts of this document where there may also be other little
tools to help out things. Basic usage of programs to parse relevant �lesystems
was already covered and will not be covered here. With the exception of the paid
hex editors, a couple of audio programs, the debugging/reverse engineering tool
known as IDA (a big exception) and some of the translation memory/CAT tools
all the programs covered are freeware, often even open source, and everything
can be done with the open source/freeware programs.

1.7.1 Hex editor

As part of the underlying project this document is part of several hex editors
were tested and rated for their usefulness so as to come up with a shortlist. Most
ROM hackers will have several at their disposal with each aimed at di�erent
tasks. However if you can pick a paid one, get the four freeware suggestions and
get a ROM hacking speci�c one most things can be done with relative ease. In
short though a hex editor is a hex editor and everything else is so much extra
that could one day make your life slightly easier. The GUI for most of these is
extensively customisable but for the most part the images are those of the stock
editor with a few menus displayed as appropriate.

The features that make life easier for ROM hackers are

� Bitwise operations

� Boolean logic/operations (sometimes lumped in with bitwise operations)

� Byte �ipping

� Search and search all

� Search and replace

� Hex distribution

� Operations on selected areas (some editors will only operate across the
whole �le)

� Scripting

� Format/structure listing support

� Variable width windows

� Undo/Redo

� Insert

� Hash values including custom options

39

� String dumps (occasionally you might just want every string in a game
even if inserting it back in will be a pain without the surrounding info)

� Custom character encoding support

� Compare �les (including size di�erences/inserted section support)

Raw disk editing, program/memory editing, X86 disassembly, base64 decode
and similar things are other features that an editor might be sold as having
are great but they have been of limited use to ROM hackers in the past, even
program/memory editing is usually taken care of by specialist programs as you
will see when cheats are discussed.

40

Paid The freeware editors in many ways provide a more than adequate re-
placement for the commercial tools but many still like the commercial o�erings.
The two best ones are quite pricey and are roughly equal in ability.

Hex workshop Hex Workshop homepage
Probably the most popular paid editor among ROM hackers.

41

http://www.hexworkshop.com/

010 editor 010 editor homepage
Another paid editor on a par with hex workshop

42

http://www.sweetscape.com/010editor/

Freeware The freeware o�erings here, unlike some other areas of computing,
are not on a par but with a slightly di�erent GUI. However when the suggestions
in the freeware category are combined it makes for all the functionality of the
commercial o�erings.

ICY Hexplorer Sourceforge page
Almost at the level where you could drop it in as a replacement for the

commercial o�erings (save for the lack of ability to have multiple �les open at
once). Needs some setup to get the GUI functioning well but once done it is
suitable for use as a day to day editor.

43

http://hexplorer.sourceforge.net/

XVI32 Homepage
Still being actively developed and it is mainly here as it features a powerful

scripting language which can accomplish most tasks the paid and function heavy
freeware editors sport with a bit more after that owing to it being a true scripting
language.

44

http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm

Tiny Hexer Filetrip download
A discontinued editor but has some very impressive features the equal of,

and sometimes even better than, the commercial o�erings.

45

http://filetrip.net/pc-downloads/applications/download-tiny-hexer-1816-f29009.html

HxD Homepage
Filetrip download
Probably the simplest editor on this list but the go to freeware editor for a

lot of people.

46

http://mh-nexus.de/en/hxd/
http://filetrip.net/pc-downloads/applications/download-hxd-hex-editor-1770-f12907.html

ROM hacking speci�c As wonderful as the editors, commercial or otherwise,
above are they lack things like high grade table support (most of the above will
support a measure of custom characters but nothing truly custom like that
which is seen in hacking) which is fairly essential for text hacking purposes.

Crystaltile2 Filetrip download
Supports many character sets out of the box and more importantly supports

table �les.
Lacks boolean manipulations along with the standard hex operations and

seemingly �xed to 16 bytes per line.
Has a very good relative search (perhaps not quite as friendly as monkey

moore but it works and goes right to up 4 byte/32 bit search as well as many
other text grade features covered later)

Has a compression search (mainly type 10 LZ and lesser support for type 11
LZ and hu�man).

CRC 16 and 32 are available and can be focused on a selection.
DS �lesystem support and header viewing, top �ight tile editor/viewer, full

ARM9 and ARM7 as seen on the DS disassembler
Support for a fair few SDK and common formats (NARC, SDAT, NFTR,

DS 2d formats, some general archive formats)

47

http://filetrip.net/f23649-CrystalTile2-2010-09-06.html

48

Windhex32 Not to be confused with the popular disk forensics grade hex
editor �winhex� which is not in the paid list owing to a lack of bitwise features
and similar things (it is very good at disk forensics though).

Romhacking.net page
Great table and text support (including multitable support you can switch
between), some SNES speci�c memory mappings and SNES/NES tile editor.
Mainly just a very nice text capable hex editor with table support and some
tools to complement that. It lacks undo support and some GUI choices are a
bit odd which prevents it from being a drop in replacement for HxD.

49

https://www.x-ways.net/winhex/
http://www.romhacking.net/utilities/291/

Gold�nger Romhacking.net page Not to be confused with the GBA as-
sembler Goldroad, the common translation of the Chinese term for cheats or
the the common translation of the Chinese term for cart pins.

Support for 9 tables at once, it does not come with ASCII readout as stan-
dard so you will have to �nd/make one. It does feature some table editing
abilities.

Although not quite suited to full text display it is unlike most other editors
in that it is not necessarily bound by the end of the line. This makes it a nice
choice for text editing without having to make a custom tool or dump the text
and attempt to get something done in a more conventional text editor.

50

http://www.romhacking.net/utilities/204/

Translhextion Romhacking.net page
New fork/version Romhacking.net forum thread
For many the standard ROM hacking hex editor for a long time now (al-

though crystaltile2 is edging it out a bit).
Adjustment of hex window size possible via editor but not grouping.
Jump including relative jump support available and can manipulate bits
Can search using tables and relative search support is available.
No undo support but a nice read only option by pressing tab.

51

http://www.romhacking.net/utilities/219/
http://www.romhacking.net/forum/topic,14373.0.html

1.7.2 Tile editor

Although you can edit anything with a hex editor it gets very complex to do
anything other than the most basic editing using one and the �rst thing to move
to a higher level tool is 2d graphics which get a tile editor. There are several
available although only a handful will be focused on here. Various homebrew
development kits have some nice programs as well aimed at conversion from
common formats to the somewhat odd formats used by the handhelds and other
consoles.

Crystaltile2 Filetrip download
Features one of the best tile editors out there (support even for the odd cus-

tom hardware display formats and a tile editor capable of being set to arbitrary
widths) and has support for various DS image formats on top of the DS �le
system itself. Exporting and importing images is also possible.

52

http://filetrip.net/f23649-CrystalTile2-2010-09-06.html

TileEd2002 Homepage
Filetrip download
A GBA vintage editor but as the GBA and DS hardware are largely the

same it can get far. It can do basic sized tiles in the two most common hardware
formats and has a nice palette �ddling option (one colour at a time if you want),
something which some of the others lack and thus is useful when trying to �gure
out what amount of padding a palette format uses. Lacks support for highly
custom tile sizes (it will crash if you try on GBA format imagery) although it
does support loading of savestates to get palettes directly from those. Note also
the use of imagery to display text as opposed to a text rendering engine; such
a thing is very common in smaller puzzle games where there is not much need
for actual text, for use in stylised text and in menus in general.

Also the palette as held in the GBA.

53

http://home.arcor.de/minako.aino/TilEd2002/
http://filetrip.net/gba-downloads/tools-utilities/download-tiled2002-064b-f7846.html

TileGGD Github page
Romhacking.net download
Although the above two should do for most editing purposes this program

has hugely customisable support meaning most conceivable hardware formats
should be covered (from 1 to 32bpp with big and little endian support) and in
some ways has a slightly nicer user interface than crystaltile2. Unlike the other
two there is no editing capability built into the program but there is export and
the information can be used to direct an editor of another program.

54

https://github.com/barubary/tiledggd
http://www.romhacking.net/utilities/646/

1.7.3 Spreadsheet and command line

The following is a few basic tools that can be used to help out when ROM hack-
ing when existing tools fall short and before/instead of jumping to programming
a game/format speci�c tool.

Libreo�ce usage O�ce suite homepage
Calc usage/help page
Calc is the libreo�ce spreadsheet program and it supports hexadecimal after

a fashion. It is certainly no substitute for a fully realised programming language
but it has proven quite valuable when making quick and dirty scripts or reverse
engineering formats.

There are seven main operations that get done beyond the basic addition,
subtraction and multiplication.

Pasting At least one of your hex editors should have a text export option
that when you have set the appropriate amount of columns can export a text
list of the hexadecimal (e�ectively making an array) and equally a search option
should be able to export the results. Either way you will need to paste this into
the spreadsheet which for the most part is fairly intuitive and automated but
you will occasionally have to import as a �xed width or as a delimited set of
text (usually a space or tab doing the delimiting). Merging cells (say for a 32
bit value spread across 2 columns where you do not want to change your editor's
behaviour) can be done but the quick and easy way is to paste the columns into
a text editor and search and replace for the delimiting value.

If you must though you are better o� abusing a maths function and mul-
tiplying by the appropriate hexadecimal value (65025 and 255 to shift the hex
equivalent by 2 and 1 bytes respectively) and the reverse using mod, �oor and
other functions.

Bitwise, boolean and �ipping operations are best done in a hex editor and
given the option you will also want to import as text (all the functions will still
work) as numbers have a habit of being parsed to something.

Fill A basic command/option but not one everybody knows about. In the
bottom right corner of a given cell when selected there will be a small square
which you can click and hold before dragging down or up (or across) and the
cells have the contents replicated in the cells covered by the drag range. If you
have a pattern it will tend to be continued and if you have a formula that will
tend to be continued but the cell contents aligned to the same thing (if the
original was c4 - c3 the next will likely be c5-c4), it is not foolproof and some
of the more advanced things you want want to do can be tricky to pull o� but
it has worked far more often than it has not.

Dec2hex and hex2dec Although calc does support hexadecimal and you
can combine items into one function it is usually easier to have the initial hex-
adecimal values, the decimal equivalents and the conversion back again.

In calc the commands are dec2hex to convert from decimal to hexadecimal
and hex2dec to do the opposite.

55

http://www.libreoffice.org/
http://help.libreoffice.org/Calc/Welcome_to_the_Calc_Help

Di�erences Granted this is more of a technique than an actual function
but it is the most used concept that actually changes/generate data. If you have
a �eld of pointers (covered later but the general idea is a value that contains
the location of another value) and the results of a search for something that
indicates the start of a value you might need them to line up but it might not
be readily apparent. Most of the time with pointers values change between them
(if the data is a �xed distance apart there is no need to incur the time penalty
for looking up the pointer and maybe doing some operations upon it) and this
can give things away. To do this simply take the next pointer value and subtract
the current one. The result will be the di�erence and if you do it for an unknown
pointer set you can quite easily match things up and determine if they are �out�
by a given amount. You can do a similar thing in reverse to generate new �le
lengths to save calculating and changing an entire pointer table by hand but by
this point it is probably better to build a proper program.

Rounding function As mentioned data tends to like to be found at 8,16
or 32 bits or some other interval (several �le formats on the DS have been
observed to align to an address that is a multiple of 100h). CEILING is the
main function here although remember it takes decimal input for the number
to round to. MROUND can also be used in a pinch but remember it can also
round down which would be bad so best to add an amount if you are going to
use that.

Sort function Not quite so useful in ROM hacking as it is in day to day
use is the ability to sort by a value (either letter order or number order)

True/false queries and parsed data Humans are not so good at recog-
nising and interpreting numbers at pace but nice coloured squares are a di�erent
matter and quite possible in various spreadsheets. Still if you must use numbers
1 and 0 are easier to account for than lengthy values and spreadsheets can then
help with this. The basic method uses the IF command and is typically formed
�IF(some value/cell, equals/is less than/is greater than, then FALSE/TRUE)�
but deleting as appropriate.

Filecutter crackerscrap.com (click on downloads)
Usage: �lecutter �le.in length �le.out <-s start>
As windows lacks the ability to slice up �les from the command line you

have this program. Once you have your list of addresses you can use this to
generate a batch �le with the addresses as the arguments and although it will
be speci�c to that incarnation of the �le (not such a problem if you just need
everybody to slice up the �le as it comes from the ROM) you have just built an
archive unpacker. If you need to couple it with a decompression tool you can
do that as well in just a few extra steps back in the batch �le stage.

Input is in decimal by default but hex can be used if you stick 0x in front of
the relevant numbers.

Getmyhex Romhacking.net download
Filetrip download

56

http://crackerscrap.com/
http://www.romhacking.net/utilities/504/
http://filetrip.net/pc-downloads/applications/download-getmyhex-1500-f29200.html

A simple tool to get the hexadecimal readout of various short sections of
text.

Radare(2) Project homepage
Now taking the place of the Romulan program featured in earlier editions. It

is a scripting language but not quite, it is aimed at reverse engineering purposes
though the focus is more on the PC and related platforms.

1.7.4 Compression

Compression was once the bane of ROM hackers but it got a lot easier to handle
on the DS and is not so bad for the GBA either. At this point it might even have
reduced to making for a simple extra step using a known tool when extracting
something from a ROM or putting it back in but not much else.

DSdecmp Github page
Supports compression and decompression of LZSS formats seen on the GBA

and DS (type 10, 11, 40 and binary/BLZ), RLE and Hu�man.

Cue's GBA DS compressors GBAtemp thread
Filetrip download
Also supports compression and decompression of LZSS formats seen on the

GBA and DS (type 10, 11, 40 and binary/BLZ), RLE and Hu�man as well as
LZE (used in Luminous arc titles).

Crystaltile2 Filetrip download
Has a measure of compression support built into the �le manager (type 10,

type 11, binary decompression support some RLE and maybe Hu�man) and
support for some compression searching options. Somewhat buggy but you can
learn them and play to them well enough.

GBA speci�c BIOS and to a lesser extent general LZ compression can
be searched for as it makes fairly distinctive changes to the hex. There are also
a few tools geared towards being able to deal with GBA ROM images directly
and work around issues stemming from a lack of a �lesystem.

GBA Multi DeCompressor romhacking.net download
Can be directed and fed VBA SWI logs (SWI being the name for the BIOS

calls and as mentioned the BIOS in the GBA and DS feature decompression
functions).

NLZ-GBA Advance romhacking.net download
Ostensibly a graphics editor but one with compression support and compres-

sion searching.

unLZ-GBA romhacking.net download
A slightly older tool but one of the few ones capable of compression searching.

57

http://radare.org/y/
https://github.com/barubary/dsdecmp
http://gbatemp.net/topic/313278-nintendo-dsgba-compressors/
http://filetrip.net/nds-downloads/utilities/download-cues-gba-ds-compressors-10-f29010.html
http://filetrip.net/f23649-CrystalTile2-2010-09-06.html
http://www.romhacking.net/utilities/431/
http://www.romhacking.net/utilities/529/
http://www.romhacking.net/utilities/362/

Lz77restructor2 Filetrip download
A newer tool with abilities in graphics and text extraction and insertion/edition

on top of the ability to search for compression and restrict those searches.

GBADecmp romhacking.net download
A simple tool to decompress and recompress data from/to a known location.

Crystaltile2 Filetrip link
Supports type 10 LZ which is the same as the GBA BIOS LZ compression.

Also supports compression searching.

GBACrusher Filetrip link
A tool to compress �les using GBA BIOS compatible compression methods

like the 8 and 4 bit Hu�man compressions, Di�erential, Run length encoding,
LZ (type 10) for VRAM and for WRAM. Command line version included.

1.7.5 Music

Format and console speci�c tools will be covered in the relevant sections. How-
ever a few high level tools are useful to have.

Wave editing - Audacity Audacity Sourceforge page
Imports most wave, PCM and ADPCM variations and features editing, some

mixing ability and �lters.

Tracker format - Open MPT Open MPT homepage
A fairly advanced program with support for playing, editing and exporting

various tracker formats. Should have a measure of DLS support although it
can be problematic. Formerly known as ModPlug Tracker which is what some
tutorials written before the rename will refer to it as.

Midi speci�c - Anvil Studio Anvil studio homepage
A freeware program that several of those editing audio for the GBA like to

use.

58

http://filetrip.net/gba-downloads/tools-utilities/latest-lz77restructor2-f29641.html
http://www.romhacking.net/utilities/433/
http://filetrip.net/f23649-CrystalTile2-2010-09-06.html
http://filetrip.net/gba-downloads/tools-utilities/download-gba-crusher-010-f28823.html
http://audacity.sourceforge.net/
http://openmpt.org/
http://www.anvilstudio.com/

General editing - Awave studio Awave studio homepage
A largely paid piece of software that can help convert �les and deal with less

than perfect implementations of some audio formats various game speci�c tools
might output. Midi and DLS support is available.

1.7.6 ASM/Assembly

Usage is often as extensive as assembly itself but some tools none the less

Emulators (debugging/hacking grade) The following is a list of emulators
that possess debug functions of a grade that is useful to ROM hacking without
going to abstract methods of debugging.

DS there are a handful of emulators available but only three have any real
support for commercial ROM images and debugging.

Desmume
Desmume download page
The developer and regular versions feature memory viewers, disassemblers,

VRAM, OAM and other such viewers. Also features support for GDB and LUA
type debugging as seen in high grade hacking focused emulators like FCEUX.
Its cheat making options are fairly well developed nowadays as well.

no$gba
no$gba developer version page
The gaming version of no$gba features very few debugging features (although

there are some memory editors that interface with it) but there is a debugging
version, which is now free to download, available with extensive debugging abil-
ities. Note that ROM images may well need to have their secure area encrypted
to run but eNDryptS Advanced should be able to handle that.

iDeaS
iDeaS homepage
Though slightly less developed than Desmume on the commercial ROM front

it does however support something closer to breakpoints as seen in no$gba and
the GBA emulators as standard. Function logs and run to selection command
are more prominent in the debugging section though and it is not quite a full
replacement for no$gba.

GBA The GBA has a somewhat larger and more featured collection of
debugging grade emulators.

VBA-SDL-h
VBA-SDL-h Homepage
VBA-SDL-h sharesource page
Filetrip download
Version of the popular GBA emulator reworked to add debugging support

like the ability to set breakpoints.
VBA-h
Filetrip download
VBA-sdl-h above is geared towards assembly hacking and lacks much in

the way of a GUI where VBA-h is geared towards memory viewing and cheat
making.

59

http://www.fmjsoft.com/awframe.html
http://desmume.org/download/
http://wiki.desmume.org/index.php?title=Faq#What_is_this_Lua_stuff_I_see.3F
http://wiki.desmume.org/index.php?title=Faq#What_is_this_Lua_stuff_I_see.3F
http://www.fceux.com/web/help/LuaScripting.html
http://problemkaputt.de/gba-dev.htm
http://www.no-intro.org/tools.htm
http://ciacin.site90.com/ideas.php
http://labmaster.bios.net.nz/vba-sdl-h/
http://sharesource.org/project/vbasdlh/
http://filetrip.net/gba-downloads/emulators/download-vba-sdl-h-r070904a-f28914.html
http://filetrip.net/gba-downloads/emulators/download-vba-h-172-f28913.html

no$gba
no$gba developer version page
Along with the DS the GBA is well supported in the debugging editions of

no$gba.
BoycottAdvance
Filetrip download
Some prefer this to VBA-SDL-h and it certainly is a bit more GUI happy. It

can take a bit more to get some ROM images working and some of the features
are not as extensive but it does have breakpoints which counts for a lot.

Disassemblers Disassemblers are tools that can be directed to turn machine
code and related information back into assembly code. They are pretty dumb for
the most part and their output will tend not even to be able to be reassembled
without some modi�cation by a human, however take the time to set one up
properly for the task you want and they are invaluable.

GBA and DS Emulators will usually provide some disassembly and as
they know what mode the processor is running in at the time and have various
viewers for memory (video, normal or otherwise) they can be even more useful
but standalone disassembly tools do exist. Note that the DS does feature a
custom, albeit widely supported, compression format that its binaries can and
do use.

� Crystaltile2Filetrip download. Has a basic disassembler for ARM9 and
ARM7 built into the program and the ability to interface with other pro-
grams.

� NDSDIS2 NDSDSI2 homepage Filetrip download. A basic standalone
disassembler aimed at the DS.

60

http://problemkaputt.de/gba-dev.htm
http://filetrip.net/gba-downloads/emulators/download-boycottadvance-028-windows-f28912.html
http://filetrip.net/f23649-CrystalTile2-2010-09-06.html
http://hp.vector.co.jp/authors/VA018359/nds/ndshack.html
http://filetrip.net/nds-downloads/utilities/download-ndsdis2-223-f28977.html

� arm-eabi-objdump Part of devkitpro/GNU toolchains. Not so useful on
ROM images/for single �les only and does not support compression but
should work well if you can get it something it can sink its teeth into. If
dealing with newer systems then looking at these sorts of toolchains will
get you something.

� IDA IDA homepage Paid software, the freeware edition is quite locked
down though (basically X86 or nothing). This is the go to general purpose
disassembler/debugging tool and one all new disassemblers and debugging
plugins/tools for various platforms tend to be written for.

Assemblers The processors in the GBA and DS are quite similar so you can
usually go from one to the other. Developer no$gba and crystaltile2 feature
single instruction editing and IDA has some abilities in this arena too. Also
tending to be 16 or 32 bits in length you can often edit instructions by hand.
This will focus more on hacker grade assemblers, mainly as programming grade
assemblers have great features like the ability to create variables/human read-
able references and similar things by default where hacker grade ones tend to
require more raw input (although armips does have a lot of niceties here).

The GBA ARM7 and DS ARM9 are very similar and the added instructions
for the DS ARM9 (all of three which are not all that commonly used) you can
live dangerously and switch between them. Since the earlier versions of this
document ARM have risen up even further in the world (they basically own
all of mobile phones and tablets) so if you are using newer tools, or ones not
suggested here, then make sure you are using the right modes.

Again assembly will be covered later (including some links to the o�cial
speci�cations) but in the meantime imrannazar.com ARM Opcode Map has a
full listing in a more readable form.

armips
romhacking.net download
program homepage
A relative newcomer in the ROM hacking assembler world (the �rst release

was back in September 2009). Geared towards GBA and DS ROM hacking (also
MIPS R3000 for the PS1) it has the option to use macros, labels (global and
local), can load tables so as to be able to load custom strings and something
closer to C/C++ family maths than the average assembler. Owing to the way
it works it has pretty good support for overlays as well.

ARMeabitoolchain
ARMeabi deals with the underlying assembler for the GNU development

toolchains (although for the GBA/DS speci�c stu� you will want to be looking
at devkitpro).

As part of an earlier hacking project a kit was made to assemble small �le
fragments into things that could be dropped into the ROM. Two main methods
aimed at hacking here

cracker's ARM ASM kit
crackerscrap.com (click on projects)
gbatemp download (older version)
Garmy
romhacking.net download
For the GBA you may also like this script from Dwedit.

61

http://devkitpro.org/
http://www.hex-rays.com/products/ida/overview.shtml
http://imrannazar.com/ARM-Opcode-Map
http://www.romhacking.net/utilities/635/
http://aerie.wingdreams.net/?page_id=6
http://devkitpro.org/
http://crackerscrap.com/
http://gbatemp.net/up/cr-dstmt.zip
http://www.romhacking.net/utilities/456/
http://forums.nesdev.com/viewtopic.php?f=5&t=10176&start=0#p113532

goldroad
romhacking.net download
For quite a while the main assembler available for the GBA as far as ROM

hacking was concerned. It is not the cleanest tool out there but can get things
done and for some armips replaced it but the above tools are now the preferred
method.

armish
Project homepage
Written in lisp and aimed more at homebrew programming it is another

assembler for the ARM processor family.
arm sdt
More of a programming assembler and features some very nice functions to

help with program development. Many of the GBA homebrew emulators, and
some versions of moonshell on the DS, were coded using this in preference to the
GNU toolchains, something which made maintenance, forking and third party
contributions more di�cult in some cases.

FASMARM
An ARM plugin for the X86 and x86-64 assembler FASM. You can �nd

FASMARM here.

62

http://www.romhacking.net/utilities/343/
http://common-lisp.net/project/armish/
http://flatassembler.net/
http://arm.flatassembler.net/

1.8 Basic �le format concepts

Much of the rest of this guide revolves around being able to pull part �le formats
and it will be covered and related back a bit to the underlying hardware and
the concepts the area is based on but there are things to look for when pulling
apart a �le.

Identi�ers also known as magic stamps these are small lengths of usually
ASCII text or hexadecimal that are �unique� to the start of a given �le
format, section thereof or command.

Lengths most times the lengths of a �le or the �les contained within an archive
format are very important to have. It need not be present if you can
calculate the lengths otherwise.

Pointers as well as lengths the locations of the �les are useful to have as are
the sub sections of a complex �le format and these will tend to have values
that state the location of them (point if you will).

Header the start (or sometimes end) of a �le that often houses information on
the rest of the �le.

It gets a lot more complex, area speci�c and there are various methods and
pitfalls some of which have already been mentioned (things like word alignment)
but if you can �nd one or more of the above and document those you will usually
be well on your way to reverse engineering a �le format.

Also for an example on why your hex editor will want to be able to change
the size of the window (preferably when maximised and with a simple click and
drag of the mouse)

63

Just having opened the �le and then after quick resize and a tiny delete

64

2 Graphics

Whether it is ripping them or wanting to edit them the �eld of graphics hacking
is, and has long been, a huge part of ROM hacking. Generally there is a line
that can be drawn between 2d and 3d imagery as they tend to have di�erent
hardware underneath it all, however both can be used in conjunction to in�uence
and augment the other; isometric imagery and sprites used to generate a �rst
person �3d� view is nothing new but many are surprised to hear that New Super
Mario Brothers on the DS used 3d models instead of sprites to make a fairly
traditional 2D platformer. The 3d hardware of the DS gets used in various ways
that might not be immediately in line with the general perception of 3d as well.

Basic graphics concepts

In computer games, and most visual or other sensory media until you meet
things like abstract works (note a somewhat di�erent concept to abstraction
as seen elsewhere in this document), there are two concepts that feed o� each
other at work. 1) is the suspension of disbelief and 2) is getting the audience
to use their imagination. 2) is the subject of any good artistic tutorial but in
the meantime think how a camera might pan away and use some audio cues
rather than attempting to display violence or a good book will spend a lot
of time setting a scene and describing things or otherwise describe situations
compelling to humans. As it is very involved 2) is not really something that
can be covered here other than to say it is well worth learning about, even if
you are mainly a technical person, both in general and to help when you try to
guess what methods will be used to achieve an e�ect. 1) however is much more
of a scienti�c discipline, although to cover it in depth we would have to delve
into various aspects of biology and psychology, so it gets covered. To make an
image look real, assuming you want that sort of thing3, it

1. Has to replicate enough colours that the human eye can not tell (this is
typically taken to be about 24 bit aka 16.7 million colours, although those
that edit images like to go to 32 bit (4294967296 values) so as to have
more information to edit with and avoid having colours jump from to the
other) and although the GBA and DS screen is 16 bit it can do the job if
you do it right.

2. Has to have enough information, this typically means having a point and
the point next to it not being distinguishable from one another (if you can
see the points that make up the average image something has gone wrong).
Now there are ways around this as the human eye is better at brightness
(luminance) than colours and there is such a thing as empty magni�cation
where you can blow things up/zoom in but no real new information will
be gained, not to mention humans do not see ultraviolet so it tends not

3It stems from robotics but there is a concept known as the uncanny valley which reads in
brief �As a robot gains more human like qualities then humans will react more favourably to it
on an emotional level, this is until a tipping point is reached where the robot is fairly similar
to a human but not quite and humans will start reacting less favourably, or even negatively,
on an emotional level until the robot gets considerably more realistic (no small feat). At
such a point the emotional reaction turns back towards the positive�. The idea has parallels
throughout media and other attempts to emulate either a human or something that is seen in
the real world. To this end going for ultra realism is not always the best bet.

65

to be replicated in imagery. Indeed much of lossy compression is tasked
with doing just this.

The alternative to actual pixels and having 3d ultimately rendering into pix-
els is so called vector imagery. Vector imagery is named for the mathemat-
ical/graphing term called vectors and de�nes images entirely mathematically
(for instance �draw a square, line thickness 3 with a length of 4 at point 0,14�
can be scaled to any size with simple multiplication). Fonts on computers have
used it for years and consoles have recently got into it (newer �ghting versions
of Street Fighter being noted for it) but it is quite rare to see in the end result
of a console game, much less a handheld title. Still if you want to there are
programs like Inkscape that you can try out and attempting to render pixel art
as vector imagery is quite a popular activity in certain circles.

2.0.1 Aliasing

Most screens in the world (and as far as games go it is mainly only the Vectrex
that di�ered here) use a grid of pixels that can be individually set to various
colours to display images. Rendering this out means a nice de�ned line can
appear as a run of a couple of pixels and then appear to shift one pixel and
then another run. The human eye is quite adept at picking this up, and, unlike
certain other concepts in video and graphics, even when otherwise not trained to
(see the example below) so techniques (known as anti aliasing) were developed
to lessen the e�ect.

Example (might need to zoom in a bit)

This is also a problem when you take an image that was made at one size
and scale it up, or sometimes when you scale it down, to something that is not a
simple half (or quarter or so on) size of the original, beyond that though scaling
non vector imagery has several potential pitfalls so do it sparingly or even better
do not do it at all.

2.0.2 Haloing

Related in some ways to aliasing above, aliasing and the techniques to dodge
it can trouble things. Here when trying to select just the outline of an item
on a complex background it might be hampered by the anti aliasing which has
a habit of causing a slight merging/smoothing of colours and transitions, as a
result a coloured outline can appear around it which looks not unlike a halo.

66

http://inkscape.org/

This is one of the reasons why sprite sheets and similar things will often come
as a selection of sprites on a hot pink or lime green background which lessen
merging e�ects.

2.0.3 Bit depth

In general imagery it means one thing and that is how many bits are assigned
to colours, something which was covered in the introduction to this section, but
in 2d console imagery it means what number is assigned to represent each pixel
with typical values being 4 and 8, though 1 and 2 are seen commonly enough
on various systems, including the GBA and DS. Now this does not mean 4 and
8 bit colours but that you can select from a choice of colours from a premade
selection which is composed of 16 bit colours. Later on a concept known as
�sector addressing� is covered which works on a related principle.

2.1 Palettes and colours

Although the GBA and DS capable of 16 bit (well 15 bit) colours you usually
do not have the ability to de�ne any number of 16 bit colours to use in a given
image (remember tiles are like paint by numbers and you might only have 4 bits
aka 16 colours at once or 8 bits aka 256 colours at once).

2.1.1 GBA colours (15 bit)

There is an undocumented feature on the GBA (and GBA mode of the DS) that
swaps the green and blue but that is not that commonly used.

The GBA is said to be a 16 bit screen but as there are three colours used to
make others each 16 bit value is in fact 15 with the 16th bit wasted.

Bits 0 to 4 deal with Red
Bits 5 to 9 deal with Green
Bits 10 to 14 deal with Blue
This allows 32 intensities (consider it a 5 bit number and higher numbers

are more intense with lower ones being closer to black4).
This also means that depending upon how you look at it the GBA/DS (and

SNES) use BGR video instead of the standard RGB notation used almost ev-
erywhere else (naturally with printing using di�erent primary colours to light
it uses a di�erent colour setup which is usually Cyan Magenta Yellow blacK
hence your colour printer usually having four cartridges or ink level displays).
The other method of note comes into play usually when video is involved and
is known as yuv (which also leads to YV12) but that will be mentioned later
and has no e�ect on any of the standard 2d and 2d imagery used on the GBA
or DS.

4The lower range until at least 10 decimal on the �rst GBA screens, and in some cases the
later ones, are not so good so developers would often manually up the contrast or brightness for
their games. This did not do well when the GBA SP arrived and which featured a frontlight,
and later a backlight, as standard. To this end several people have hacked and continue to
hack GBA games to improve the colours or, in the case of games with originals on the SNES
(it also uses a BGR colour model) and such, port colours from the �originals�. It should be
noted Donkey Kong Country actually changed far more and downsized some sprites meaning
it is not a simple hack to restore it.

67

In most operations the DS and GBA make a palette of various colours using
the above method and the imagery refers to this to generate the colours. If
you need to turn it into a 32 bit colour value, say for HTML colour notation,
most of the time it is directly interpolated (multiply by 7.96875 which is 255
divided by 32) without correction, save maybe for a rounding (this can vary
between implementations), and as most screens are not calibrated properly and
the GBA/DS screens are not stellar to begin with it works well enough.

It should also be noted the DS has a master brightness section just before
the image is displayed and optional capture hardware that change how an image
ends up being displayed and this is in addition to some of the extra features
a�orded to the GBA and DS that will be covered later.

2.2 Tiles

Although you can draw an entire image on screen at once (many DS games are
great fans of this and e�ectively make a tile 256 wide by 192 high necessitating a
tile editor capable of handling it, a trick which many legacy ones are not able to)
most 2d graphics are built from small building blocks known as tiles. Typically
these tiles are 8 by 8 or 16 by 16 pixels although text fonts and 3d textures as
well as the previously mentioned �full screen tiles� like to break from form here.
The simple way to think about them is to think of them as very boring (thanks
to the square pixels) versions of a paint by numbers picture with the numbers
being looked up from a palette. Although most people never have to touch the
graphics themselves with a hex editor an appreciation of how the hardware works
is necessary to reverse engineer some of the more complex formats. Likewise
to gain an appreciation for the animation/handling mechanisms learning about
the methods by which tiles and palettes for them operate is all but mandatory.

2.2.1 1Bpp

Technically it is a compression method (the screen/video hardware itself does
not display the mode in any real sense) but it is a special case as it is so simple
that a basic tile editor can handle it and it can be edited in place without issue
as indeed Crystaltile2 does, to that end it is here rather than later on when
compression is discussed. The idea being if you have a black and white font or
some other two colour image each four bits, the minimum length for a pixel the
hardware accepts, will in fact be one or the other allowing you to compress the
image down into 1 bit per pixel. Although it is not mandatory for developers to
use it when dealing with 1bpp imagery the GBA and DS BIOS actually carry a
�decompression� method in SWI10h that is known as BitUnPack.

2.2.2 4 Bpp

The workhorse of the GBA and a good chunk of the DS. Bringing back the icon
from Yakuman DS. The �marching ants� selection is the section viewed in the
hex editor which is as it is in the original ROM (certain hex editors can �ip
nibbles but it was not done here). As you can see each nibble looks up the
value of a single colour (one of 16) which can be anything in the 15 bit format
the GBA and DS can use. Equally there are 32 palettes each with the option
for 16 colours which the game can swap between at runtime. Although not

68

the only colour animation possible (the palette can also be edited at runtime)
a developer can use these multiple palettes to change the appearance of items
within the game and if you see the option to change at say the start of a battle
(advance wars war room is good for this) or indeed at runtime then you are
almost certainly looking at this.

Palette

As you can imagine the background is not pink in the real game and this is
as the �rst colour in a palette is treated as though it was transparent regardless
of what it is (although in practice is is fairly pointless with the way the screen
works it allows for a full colour range without the loss of a single colour).

2.2.3 8Bpp

Although available and well used on the GBA it really started to be used on
the DS.

Here each palette entry is 8 bits long and a two 256 colour palettes are
available although only one for each mode (BG and OAM)

69

Here each hex digit is the lookup for the palette with the �rst being the row
and the second being the column (although if you really wanted you could �ip
them and indeed the hardware probably does e�ectively just that but that is
introducing completely unnecessary work for no real gain).

2.2.4 GBA3 Xbpp

There is another method that much like 1Bpp acts as a sort of compression meets
hardware format method. Crystaltile2 is one of the few editors with support for
this method and it is very rare indeed (the very occasional font being about the
only thing that uses it).

It is a kind of 4 colour format (2 bits per pixel) but values are actually
interleaved between two consecutive tiles.

Nibbles are ��ipped� similar to the 4bpp GBA format. The order of the
nibbles is then lower tile, upper tile, lower tile, upper tile......

A basic example of the interleaved format 8x8 tiles (larger tiles of this
pretty much follows the same pattern but to spare confusion it will not be
covered here).

Palette as de�ned in the image. Remember the nibbles are actually �ipped
but ignoring that for the moment

The �rst pair of tiles is one fully green (01 binary on the palette) and one
fully black (00 binary)

70

The second pair of tiles is both fully green (01 binary on the palette)
All this being said it is 4 bits between the start of a pixel in a given tile and

the start of the next pixel in the tile which gives rise to the numbers seen
1 hexadecimal is 0001 binary hence the 00 going to the second (lower) tile

and 01 going to the �rst (upper) tile.
The second pair is both green and is represented by 5 hex
5 hex corresponds to 0101 binary
The pattern still holds for the single blue and single black tile
The dual blue tiles
A hex corresponds to 1010 binary.

A more complex example Most of this is going to be left as an exercise to
the reader but as mentioned the nibbles are �ipped in a similar manner to 4bpp
and it is not immediately apparent in the above example.

The leftmost (upper) tile is blank for 4 vertical pixels but the lower tile has
data in it.

00 08 08 00 hex
0000 0000 0000 1000 0000 1000 0000 0000 binary
80 88 88 00 hex
1000 0000 1000 1000 1000 1000 0000 0000 binary
The �rst pixel is blank on both counts as is the second so the 00 holds.
The third is not blank yet it is still 00, the fourth is blank but it is 10 (10

binary = 3 remember). As mentioned the nibbles are �ipped with respect to
the pixels they represent.

The �fth pixel is blue but it is 00 and the sixth pixel is 10 (again �ipped).
Going to the next line
Blank and then blue. Flipped again (10 and 00 being seen in the binary).

2.2.5 GBA2 4BPP

For the sake of completeness crystaltile2 has another format known as GBA2
4bpp that is in some ways slightly more complex than GBA3 XBPP. Very few
games have ever been observed to use it either.

It is a 4bpp format and technically is not nibble �ipped like the other sub
8 bit formats but in practice it is a kind of interpolated format (each pixel
technically having a choice of four colours) and additionally the �rst pixel in
the pair of them sets the colour range for the second one.

71

The range in question is value 0-3, 4-7, 8-B and C-F. They could up so 0
through 3 allows the �rst four pixels (selection 0), 4 through 7 allows the second
four pixels (selection 1) and so on but some more background is needed before
that makes sense.

The �rst nibble selects from the �rst four colours using the range (0 through
3 pixel 0, 4 through 7 pixel 1 and so on)

The second nibble selects from one of four colours also in a row but what
four it can select from is determined by the value of the �rst nibble. Within
the values although it might not matter for the �rst pixel the second one has
the four pixels also in a range of four and those are selected by the actual value
within �rst pixel.

Examples
Selection 0 value 2 (in practice it would be 2 hex for the �rst pixel) allows

the third group of colours from the palette for the second pixel.
Selection 3 value 2 (in practice it would be E hex for the �rst pixel) allows

the third group of colours from the palette for the second pixel.
Selection 0 value 0 (in practice it would be 0 hex for the �rst pixel) allows

the �rst group of colours from the palette for the second pixel (0 through 3 in
the standard numbering).

72

2.2.6 Bitmap

This will probably be better served after discussion of graphics modes and hard-
ware but know this is not referring to the �bitmap� image format as seen in every
basic image editor and most advanced ones, although some modes of it share a
lot in common with said format.

The GBA has the ability to eschew tiles and just draw images line by line
across the entire screen although it limits what can be done as to do it takes
up most of the VRAM and it is not feasible to change it all every frame so
extremely few games use it.

In the graphics it is known as modes 3, 4 and 5

3 is a 240x160 (aka the GBA resolution) 16 bit mode where colours are de�ned
there and then (same BGR fashion as the rest of the hardware)

4 is a 240x160 8 bit mode where the full 256 colour palette is used (modes 3
and 5 do not allow transparent colours unlike this) and allows 2 frames to
be de�ned in memory at once.

5 is a 160x128 (less than GBA resolution) mode using the same idea as mode
3 but the lowered size allows two frames to be stored in VRAM.

The DS has a kind of related tile mode where large tiles still composed or palette
references like regular tiles can be used and it is quite popular but the DS has
a slightly increased VRAM size to manage this better. It also has the ability
to hold and manipulate images larger than the resolution in bitmap modes (it
comes in handy for some end stage representation of 3d) although again this is
better served for a discussion of hardware.

2.2.7 Known formats

Some games have been seen to use known/common formats like GIF, PNG
and JPEG with the most proli�c being that of the DS Opera browser. With it
having to decode them as part of the general operation (what is the web without
images after all) meant it could use such formats internally quite happily but
other games have certainly been seen to do this as well. This becomes even more
common on other more powerful consoles but the DS does have a few formats
that Nintendo provides in the SDK that allow for some fairly extensive abilities,
more on those in the layout/OAM section.

2.2.8 Crystaltile2 export and import.

Although Crystaltile2 usage is covered in depth later this is a basic operation
and should be covered now. Most tile editors are just that and will allow you to
edit an image but occasionally you are going to want to not be tied to a pixel
by pixel editor and will want to use a more featured editor.

The act of exporting and importing images is easy enough. Although it is
quite possible to do without a palette set properly it is best to have one in place
else you will have to edit pixels accordingly in your proper image editor (red
means blue and such) and much like hex mathematics you can fall foul of this
when just making quick changes.

73

First select the tiles/area you want to edit. The either right click or click
the edit pulldown menu

You can either copy the image out if you have a few small edits but most will
instead opt to export it. Crystaltile2 has a few basic options but BMP works
for most purposes. Here you can import it into your chosen editor

There is also the second option of a 1:1 export which splits things along the
tile lines and allows a sort of regular expression to be formed.

74

Once in the editor you can edit it accordingly

75

Right clicking or clicking the edit pulldown menu and pressing import will im-
port the newly saved image back into the editor where you can move it (it will
snap to gridlines). Again you can use the copy and paste if you prefer although
do remember to merge layers if your editor supports it.

76

Move it accordingly and then double click the image to set the image

On palettes If the colour you want is in the image then the dropper is
usually su�cient but most tile editors have the option to export palettes to the
commonly supported windows palette format; crystaltile2 has it right there in
the palette window and BMP has a palette built into the �le format (technically
optional but crystaltile2 includes it).

2.2.9 Avoiding gradients, AA, lossy compression, noise and such
things.

The name of this says it all really and most pixel artists will know this already,
however it needs to be mentioned to spare you the hassle of having to redo the
whole palette which might not even be viable if the palette is used elsewhere, not

77

to mention if you only have limited colours available it makes sense not to waste
them unless you do truly have the option to do so. To this end you should
avoid gradients (hopefully one already exists if you need one), anti aliasing
options (quite often added in when adding text), resizing (the nearest neighbour
algorithm is probably the worst general usage scaling method but it has the
bene�t of using the colours it had to begin with if you truly need one), noise
functions and other things that will add random extra colours to your image
(like saving as JPEG, even at �100%�). This means that unlike most image
editing you might have done at other points in life you are limited here.

On a di�erent note much like changing palettes can change things elsewhere
in the ROM you also have layout to contend with, or worse you face limited
memory, which might limit the tiles you can edit but that is the subject of the
next section.

2.3 Layout, timing, OAM and special e�ects

The consoles do not magically know how to sort tiles out and indeed much of 3d
and 2d imagery, as well as coding in general, revolves around reusing things to
lessen the drain on resources; you surely have seen old RPGs where you would
�ght a giant rat, a plague rat which looks exactly like giant rat but with a green
and dark blue/purple paint job and later �re rat which has a red, orange and
yellow paint job but looks exactly like the earlier rats. To do this the GBA and
DS have hardware they can employ to change things in addition to the palette
although said hardware can also control what palette is used. Most of the images
used thus far have been simply one tile after the other and aligned manually for
the purposes of clarity but there arises the concept of tile reuse which breaks the
one after the other pattern and compositing (sticking one image over another)
to trouble this, both are very common techniques in 2d imagery.

2.3.1 Introduction to the OAM and BG modes.

The GBA and DS have two principle graphics types known as �BG� aka back-
ground and �OAM� aka object area memory aka sprites which work together to
display games. Although you can use one to do the other, and games have done
as such, for the most part the distinction is observed and backgrounds will be
left to do backgrounds (a big exception on the DS is 3d which is rendered in the
3d hardware and moved to the background to display) and OAM which is left
to handle the sprites and image overlays (give or take windowing). Text can
be in either BG or OAM depending upon the game although BG is far more
common and usually the suggested method for developers to use. Finding out
what method something uses is usually best done by getting to the point in the
game it is used and viewing the OAM, sprite and BG in a given emulator (VBA
for the GBA and desmume both feature such abilities). Such viewers are also a
fairly good ripping method.

The GBA and DS are much the same although the DS has two engines known
as A and B which is ostensibly one for each screen although they are not tied to
a given screen and can easily be swapped at runtime. The �A� engine has more
memory, the ability to do full VRAM bitmaps as well as what mainly houses
the results of the 3d (engine B can use the results of the 3d but it requires some
thought) and has use of the �capture� hardware which can be used to create

78

e�ects although the more general general e�ects/functions still work on engine
B.

As with most other things on the handhelds the hardware itself has sections
dedicated to running various aspects of the hardware with graphics forming a
large chunk of it. DS 3d aside there are two main components that go into video

� The main handler known as �DISPCNT� is found at 4000000 hex on both
the GBA and DS (although the DS only has it on the ARM9 memory mappings
and has a second one for the B engine at 4001000 hex).

� The actual BG (4 16 bit sections) and OAM stu� that handles all the lower
level things for each of the various modes.

2.3.2 Timing

The graphics hardware tends to act as a timer for much of the rest of the
system as far as software is concerned with a very signi�cant component of the
checks, updates and similar things being started when a vblank (vertical blank)
happens.

The general idea is the screen is redrawn a scanline (a horizontal line across
the screen) at a time. However after each scanline is drawn there is a pause
known as hblank (equivalent to time taken to draw 68 pixels on the GBA) and
after all the scanlines are drawn there is another pause known as vblank (on the
GBA it works out to be about the time to draw 68 lines or just shy of 84000
cycles and the 71 lines for the DS means it is more or less the same refresh rate
there). As updating the locations of things could cause tearing on the screen
if it were done mid refresh any updates to the screen and other things closely
related to it are triggered at these times (indeed the hardware itself dedicates
the �rst couple of bits in interrupts solely to vblank and co). Either way the
refresh rate is ever so slightly less than 60Hz which is why most games will aim
for a framerate of just below 60FPS or half that at 30FPS.

Although knowledge of how the hardware works in this regard is de�nitely
worth knowing about it should really be said that unless you are doing low level
programming or are hooking into the code using timers based o� it most of
ROM hacking is not too concerned with it and more focus is put on the OAM,
display registers and memory handling. The assembly section will cover more
on interrupts but in the meantime if you do want to read more theTonc video
section has a nice worked example and GBAtek has a lot of numbers.

Also as mentioned interrupts are a big thing so GBAtek on interrupts.

2.3.3 GBA and DS OAM (sprites)

Sprites (occasionally known as OBJs) are probably the main workhorse of games
(they are typically the things you move, the game moves and you spend most
of the game focusing on) and being able to manipulate them is a useful feature.
The GBA supports up to 128 of them at any one time and each is given a section
of memory.

07000000 hex is the location of the OAM on the GBA with obj 0 at 07000000
hex, obj1 at 07000008 hex obj2 at 07000010 hex, obj3 at 07000018 hex and so
forth.

The DS is much the same but it has a second bank at 7000400 hex that is
also 1 Kbyte long for engine B.

79

http://www.coranac.com/tonc/text/video.htm
http://www.coranac.com/tonc/text/video.htm
http://problemkaputt.de/gbatek.htm#lcddimensionsandtimings
http://problemkaputt.de/gbatek.htm#gbainterruptcontrol

It gets quite complex and as not much beyond a basic appreciation of the
concepts is necessary for most hacking work (if you have an appreciation for how
it works, can look it up and with the help of the documents decode the values
found that is good enough for most things), still you are referred to GBAtek
which has a full listing if you want it.

Three 16 bit values make up most of the useful things and packed into each
of those 16 bits

Attribute 0 - First 16 bits - Y coordinates (bits 0 to 7 leading to 256 options)
Attribute 0 - Second 16 bits - X coordinates (bits 0 to 8 leading to 512

options)
Attribute 0 - Third 16 bits - name, priority and 4 bpp palette selection
Priority is for each obj relative to the backgrounds and the lower values of

objs have a higher priority relative to each other.
The other bits are used for rotation, �ip, size and scaling options with the

remaining 16 bits in the range used for the payload of the rotation and scaling
functions when they are employed.

Most of the time edits to them are done manually with just a few tweaks
or handled at function level when dealing with assembly but if you do need to
edit them there are tools. Equally there are formats in the case of the DS that
handle initial values/setup of it for various �les so editing those is often more
useful.

OAM calculator for the DS Filetrip download
If you need to edit OAM on the DS (it might also work for the GBA but be

wary as a couple of things on the priority side of things are changed) or likewise
decode a value you need not do it by hand thanks to this tool. Usage is fairly
straightforward

Basic emulator view This just has a quick example of viewing the memory
(editing is sometimes possible here but often refreshed every vblank). From here
you would trace the thing that originally changed the OAM and change things
in the original binary (the DS quite often has helper formats for the graphics
and the GBA was fairly good about keeping the actual binary code and the
OAM values separate). It is also an early preview of animation via the OAM as
well.

GBA VBA. The sprite here is actually made up of multiple tiles.

80

http://problemkaputt.de/gbatek.htm#lcdobjoamattributes
http://filetrip.net/nds-downloads/utilities/download-oam-calculator-10-f29054.html

DS Desmume.

81

2.3.4 GBA and DS BG modes

The BG modes tend to be for backgrounds, text and some menus, as well as
providing the end result of the 3d rendering on the DS. On both the GBA and
DS there are 4 backgrounds given the name 0 through 3 (again the DS has a
second set of BG modes for engine B).

On the GBA there are 4 BG layers (0 through 3) and 7 modes, although
di�erent layers are restricted in what they can run. BG layers can be a higher
resolution than the screen if given the right options/conditions and such things
can be used for animation and general game usage to save having to stream

82

content.

How it works There are two main options here for developers to use in games.

1. Use a bitmap image

2. Generate a background from tiles

The second is superior in most cases owing to the ability to do animations more
easily (as mentioned previously the hardware is incapable of refreshing an entire
bitmap each screen update) and as such is used by the majority of games.

Emulator shots

Most of the debugging emulators feature the ability to see the various layers
that make a background. Typically this is called something like �view map�.
Examples of the VBA ones are present in the next few examples of other methods
and it is much the same for any emulator with the only di�erences being in how
much the hardware supports.

Scrolling The BG can be placed behind something and scrolled as a type of
animation (often combined with other sorts of animation) or just have a larger
BG section to focus the rest of the window on (there are other methods by
which to have bigger �rooms� than the screen so do not assume this is how a
game does it).

Visible in many games but an especially nice example exists in Tetris worlds
for the GBA. From the same BG image the impression of random stars is given
as a background.

Another good example exists in the �rst advance wars which actually makes
use of the wrapping ability (see the lack of a complete Yellow Comet �ag/logo)

83

Layering e�ects The classic example of this feature being used is beds in
RPG games where the character will have a head visible above the pillow but
the rest is covered. To do this there will be at least two layers with one being
assigned a higher priority than the sprite and the second being assigned a lower
one.

84

After disabling BG1

The second classic example which is slightly less involved is where trees or a
structural beams will be placed over the game map allowing the sprites to move
underneath them. Here many emulators will allow you to disable layers which
can be useful when ripping maps to generate a game walkthrough.

85

Example of beams from Phantasy Star 2

2.3.5 Basic animation

As the OAM can control what is on screen and where things are it is the thing
responsible for most animation. There are additional abilities in rotating, scaling
and such but those will be covered later. Although it is fairly obvious when seen
from static images it should be noted that seeing it in real time is better so if
you have the chance then do so.

There are concepts to consider.

1. Screen movement

2. Sprite swapping

As you will see later in video if you swap the images displayed on a screen
fast enough it will appear to the human eye as though they are moving. This
means you can swap sprites out to the relevant places after a given number of
frames (the screen gets updated every vblank which is both the conventional
and suggested point at which this is done). Combine this with movement of
the screen or background and you get the impression of movement. Now, as
you might have seen in the imagery representation section, images tend to be
composed of multiple tiles so you do not have to swap an entire sprite set if
you can swap swap the top half of a body instead and have the character throw
their arms up as a result though this technique can go much further.

Formats will be covered in a few sections from here but the DS SDK does
provide developers a fairly seldom used animation format known as NANR but

86

moving back to the hardware there are several good examples of this in the Ace
Attorney (Phoenix Wright) series.

Dragon Quest Rocket Slime The game provides a great example of
OAM animation in the pre title screen sequence. Again if you can see it in real
time it is quite a lot clearer.

87

Original Phoenix Wright animation The above was plain animation
via OAM but games occasionally get more interesting.

The �rst Phoenix Wright game had some fairly notable character animations
but rather than redrawing each frame of the animation the characters themselves
were actually split into components (usually face and hands) and those swapped
out as necessary to create animation. The tile view is not quite how the internal
formats do it (those usually being set up to take advantage of the hands and
face being one visual concept).

88

Background animation The scrolling e�ect was mentioned already but if
you are using a tiled background you can change the tiles the make up the
background and create animation there. Animations with bitmap images has
often been done on a programming basis but much of that is either very obvious
or quite arcane and steeped in programming methods.

Another use of the scrolling e�ect is more commonly used as camera anima-
tion in 3d imagery but here if you rapidly move around the BG map a �camera
shaking� e�ect is created and is well documented/entrenched in cinematography
as something seen when a character or location is startled or hit.

Palette animation It has been mentioned brie�y in the past but there is also
the matter of palette animation aka dynamic palettes to consider as well. Here
the game will change a colour or a handful of colours in the palette and this has
a corresponding change in the main game.

From Summon Night Swordcraft Story 2 a quick sample of three stages of
an animation. Changing parts of the palette have a black square added around
them.

89

The game, unlike most on the GBA, also features a few di�erent colour
modes for the original GBA, GBA-SP, TV and the option to change brightness
on a slider.

Developer tricks There is more on this in part III but some on 2d for now.
The idea here is the developer will do things to make the demands on system
resources less and in doing so allow them the potential for a larger amount of
other things to be done which is always good.

For instance a character walking left is much the same as a character walking
right so you only need to animate one direction and �ip the sprites over. This
might also trickle down into the sprite itself which will not be seen holding a
weapon or something that will mark it as a �ipped sprite.

If an area of a level is not being seen at present there is no need to animate
it. The basement/smithy of the Summon Night Swordcraft Story 2 used in the

90

palette animation section provides a great example. The 3d equivalent of this
is backface culling and viewpoint rendering.

Another e�ect commonly seen in 3d animation but still useful in 2d, and
seen in several games, is the addition of a single dark circle as a shadow.

2.3.6 Window feature

Although you can �ll the whole screen the GBA and DS have abilities to pick
and choose things to show and the technique is known as windowing. The basic
idea is the mode is triggered which selects a region (you have two windows
allowing for a four way split if you prefer) and you can change the display of
BG and OBJs within it. Various things and games can employ it in the actual
game but menus are a common usage.

GBAtek windowing feature explanation/description. The feature �rst has to
be enabled in the DISPCNT register and then has the windows de�ned in other
registers which can then have various BG or OBJ layers disabled as appropriate
but do remember that transparency can be made to work for the BG so do not
always expect windows to be used.

An animation technique can be done here and henke37 noted that things
can be tweaked on hblank to create certain e�ects beyond the obvious classical
or o�set windows with ghost trick (see around 5:20) providing a nice example.

2.3.7 Special features (�ipping, a�ne transformation, alpha and such)

Despite all the limited memory and quirks the GBA and DS or perhaps because
of it both feature all sorts of methods that developers can employ to perform
various alterations to the images seen.

In OAM transformation Mentioned brie�y a few paragraphs back the OAM
has options to �ip sprites and individual tiles. and is quite often used to have
characters walk to the left or walk to the right despite using a single set of sprites
(you can see an example of it up in the GBA OAM viewing section). Double
size is also available although intended use seems to be for working around
a�ne transformation induced issues (preventing parts from being clipped o�
when rotated in most cases) rather than the immediately obvious (although
that works as well).

A�ne Many guides and documents will refer to this by the two most common
things it does, which are the other two big transformations done to geometry
known to most as rotation and scaling (the third one, translation, being fairly
well taken care of by everything else). Strictly speaking though it does allow
for shear transformation and some other things and so the term a�ne transfor-
mation is more �tting.

In the case of sprites/objs it is split across the �rst two attributes and the
fourth hidden ones. The s in ones is not a typo as the normally unusual 4th
attribute is in fact a�ne transformation data but it allows for 32 attributes
(somewhat less than the 128 objects possible but that is not so bad as there is
nothing stopping things from sharing a set of attributes) in all as the �rst four
hidden attributes are used for a single transformation value and this is repeated.

Attribute 0 activates the mode

91

http://problemkaputt.de/gbatek.htm#lcdiowindowfeature
http://www.youtube.com/watch?v=1t8wWnI_I1I&feature=related

Attribute 1 selects the transformation grouping in bits 9 to 13.
The hidden attribute 3 is in fact split over four hidden attributes as men-

tioned and each carries one 16 bit value (signed 1 bit sign, 7 bits integer, 8
bits fraction format) corresponding to what are known as PA,PB,PC and PD
which can be used to e�ect rotation, scale and shear transformation and all the
same time if necessary (it does not quite work like it but if you imagine having
control of every corner and how you can use that to scale things, shear things
and rotate things at the same time) .

Tonc has a worked example of a lot of the maths involved (in many ways
it is as complex as maths in ROM hacking gets outside of some very in depth
assembly hacking), it also returns after a fashion for the 3d system. It will be
returned to there in earnest as it underpins the entire 3d system.

For those used to the maths the reference point is the top left of the ob-
ject rather than the screen and the rotation centre is set as the middle of the
sprite. In some ways this is quite limiting as some interesting things can be
accomplished with di�erent origins and centres of rotation but it does serve to
simplify things for basic transformations.

GBAtek has basic listings and tonc has more worked examples.
BG a�ne transformation is slightly more involved but follows much of the

same logic, GBAtek has more.

Mosaic Usually seen as the single corner pixel repeats for every unset pixel in
the rest of the screen but it is available for smaller values. Has to be enabled in
the individual control register and then set accordingly in 400004C hex but is
available for all the BG layers as well as equivalents for sprites. GBAtek mosaic
section and Tonc has some nice worked examples.

Alpha and brightness Alpha blending is a method by which two images
can be merged together, the not entirely accurate but layman's equivalent term
being called transparency, and can be used to achieve a variety of e�ects. Note
that the DS 3d system has a rather more complex setup for alpha depending
upon textures used and more.

For the most part alpha is a �ag and variable which is to say if it wants to
be alpha blended there will be a �ag to say so and somewhere else a variable to
say by how much (this is also where the 3d di�ers slightly in some modes).

Brightness adjustment, which the DS has a special mode in the capture unit
for, is also possible with it being available instead of alpha if you want it. Note
that many developers instead chose to alter brightness at the palette level for
the original GBA model hence the hacks to restore colours that looked rather
washed out in later GBA models.

Three registers are used here with 04000050 hex aka BLDCNT being the
main select this mode 4000052 hex aka BLDALPHA being the alpha modes and
4000054 hex aka BLDY doing for the brightness. Note that although sprites
can be blended here the setting can be overridden to always blend in the OAM.

GBAtek has more depth and full listings.

Mode 7 The SNES (which the GBA owes a lot to in terms of abilities and
hardware design) was one of the �rst to allow for a perspective transformation of
an image. Though now looking quite poor to those used to modern 3d imagery

92

http://www.coranac.com/tonc/text/affine.htm
http://problemkaputt.de/gbatek.htm#lcdobjoamattributes
http://www.coranac.com/tonc/text/affobj.htm
http://problemkaputt.de/gbatek.htm#lcdiobgrotationscaling
http://problemkaputt.de/gbatek.htm#lcdiomosaicfunction
http://www.coranac.com/tonc/text/gfx.htm#sec-blend
http://problemkaputt.de/gbatek.htm#lcdiocolorspecialeffects

it was revolutionary at the time, so much so the hardware term from the SNES
became shorthand for the technique. Tonc has more.

2.3.8 Basic DS layout formats and mapping

Although games and indeed many games do use raw formats and declare what
they should be rendered as/mapped to elsewhere (or just have a tile for every
tile on the screen) the nitroSDK provides several formats for developers to use.
They range from simple wrappers for a layout to full animation formats. Also
worth noting is that if an image is composed of tiles some of those tiles might
be reused as a kind of compression so you might have to edit those (this is very
often the case in Japanese puzzle games where text is part of the image and the
two kanji can a�ord to have a blank tile in the middle).

93

http://www.coranac.com/tonc/text/mode7.htm

A basic demonstration of the compression/tile reuse concept

A few clicks later

94

Palette formats

NCLR Occasionally seen as RLCN it is a palette format. Most of the time
a fairly pointless wrapper for the palette but other times does act as an
archive format.

NTFP Technically part of the NCLR format but seen quite often by itself and
especially on earlier games.

.PAL Not always a palette (it still being the shorthand for European and Aus-
tralian TV standards and so versions of games aimed at there will sport
that extension) but quite often palettes are seen with this extension.

Tile storage Tiles themselves need to be stored and various archive formats
have been made for them

NCGR A format that includes all the relevant data about the data stored
(widths, heights, colour depths, whether it is tiles or not and more). Aimed
more at sprites/objs but remember full screen images are possible and still
used for BG type images.

NTFT Another raw format that is technically part of another (in this case
NCGR) but seen by itself on occasion.

NSCR Aimed at background (BG) images and contains information on how
to decode and set things up.

NTFS Once more part of a bigger format (NSCR in this case)

Mapping Mapping merely involves arranging the OAM or BG into the proper
order. It can be done in many ways but the nitroSDK provides a handful of
methods although many are encompassed either by animation or by the storage
methods themselves.

NCER Aimed at sprites and provides initial OAM data among other things.

Animation

NANR An infrequently used animation format.

NMCR A format seen in pokemon to provide animations. In some ways it
might be considered a wrapper to NANR.

Fonts It will be covered later in the text hacking section but there is a fairly
complex font format many DS games use. Many other games use equally com-
plex formats where others might use simple plain tiles (maybe in a slightly odd
size).

NFTR A font format the includes character widths/dimensions, line locations
and various types of mapping available.

95

General observations Most DS editing programs will feature editing abili-
ties for these formats and related ones and exporting and importing should not
be a problem. However if you are after a more general image editor and have
one that supports the Susie plugin format (a fairly popular plugin format seen
in a lot of Japanese image editors) loveemu's nitroscrap heads down such a path.

Although they can and frequently are found by themselves they might be
put into basic container formats like narc, custom ones as will be covered several
times over during the course of this guide, occasionally stripped of components of
(maps being ignored and such), be stripped down to the their basic components
(basically a headerless �le), have a single palette for an entire range of images
(often this will be named accordingly but not always and either way it can
confuse programs that expect the same name, which is most of them). This is
especially true of animation which rarely uses the NANR format.

The formats have remained largely static over the course of things although
pokemon has a habit of changing a few things, using rarely used features and
reworking some others so tools built to earlier standards might not work properly
with that franchise.

The names above are the extensions the �les that carry them usually have
but they are occasionally known by the magic stamp which is usually a reversed
version of the extension (NCLR=RLCN and such).

In the absence of the formats at the end of the document
Lowlines current speci�cations
Lowlines older speci�cations
Tinke source code (trunk/ Tinke/ Imagen and trunk/ Plugins)
Nintendo VieWer source code (python)
They are largely aimed at programming with the latter two being source

code to various programs.

2.3.9 Video memory handling and alignment

The GBA and DS video systems are quite in depth which serves both to work
around issues of low power and to provide developers the options to do things
they might otherwise have to spend a lot of time programming. One of the more
interesting aspects of this is the memory handling as it is quite possible to run
out and there are other quirks such as alignment.

2d memory management Games, especially on the GBA but the DS is no
easy street, frequently push up against the limits of the memory and this means
there is certainly not so much of it you can never run out and with certain
graphics modes it is very easy to do. As ROM hacking so often wants to add
things you will probably brush up against this eventually. The most common
scenarios are you have a 2d overlay on a background and either the repeated
tiles want to be edited or you want to extend the overlay a bit and run out of
memory that way.

pineight.comdetails a streaming method homebrew programmers can use to
hopefully never run out of ram. DS programmers are not quite so fortunate and
will tend to have to �ddle with maps and tiles or accept a slightly lesser image.

Alignment In short the GBA VRAM will only accept writes to values aligned
to 16 bits and this most commonly rears up when compression is being dealt

96

https://github.com/loveemu/nitroscrap/releases
http://llref.emutalk.net/docs/
http://www.romhacking.net/documents/469/
https://github.com/pleonex/tinke/tree/master/Tinke
http://nvwr.googlecode.com/svn/trunk/libs/formats/
http://pineight.com/gba/managing-sprite-vram.txt

with. It has had such an e�ect that it led to a whole class of methods being
described as VRAM safe or otherwise WRAM safe if they do not work on
VRAM. Unless you are physically managing the VRAM as part of a hack (and
not say relying on a function to read so much from the cart into it) it is usually
just a matter of making sure you select the �VRAM safe� compression function
of whatever program you are using.

2.4 3d

Although some games on consoles are experimenting with vector images be-
tween tiles and 2d above and 3d covered in this section the vast majority of
imagery use in games is covered. Note it is far from unheard of for games to use
their 3d hardware to display 2d imagery and animation (several title screens on
games have been seen to do this at various levels and even swapping out 3d for
conventional 2d at points), it was already mentioned how several apparently 2d
games have used 3d models in place of sprites (New Super Mario Brothers being
noted for it) and others have augmented 2d imagery by doing things like having
backgrounds rendered on the 3d hardware (various reasons but mainly that it
really troubled the nascent DS emulation scene �nds the �rst Castlevania game
being noted for it).

For the most part this section will be very basic general concepts and DS
speci�cs as the GBA lacks proper 3d hardware and anything there is likely to be
prerendered and given to the 2d, a trick like isometric imagery or �mode 7� style
techniques. This section will also assume a knowledge of GBA/DS 2d hardware
and can be considered to follow on directly from it.

On computers and to a lesser extent consoles as well (although they use the
hardware designed for it the software development kit developers will often still
cook up their own programming methods for it) the two dominant methods for
rendering 3d at time of writing, and for some time prior, are known as DirectX
(a 3D technology from Microsoft and used in Windows and the xbox line of
consoles) and OpenGL (a 3d technology of similar power and scope but as it is
relatively open it is used in most other places as well as being available for use
in Windows).

Lines are blurred between the hardware running things and the standards
built on top of them; DirectX and OpenGL will put standards out which the
hardware makers will build to and the hardware makers (and engine developers)
will also have a say in what should go in the next versions of the DirectX and
OpenGL standards with it only getting more blurred as those technologies also
start to encompass general computing tasks (physics and such for games but
owing to the way they are built they are also pretty good for aspects of high
performance computing) with GPGPU being the term of choice to look up. Also
in the case of DirectX the standard also de�nes input methods and helps with
sound.

For the most part though the GBA and DS have all that 2d animation
capabilities that consoles or 2d animation in general ever wanted (naturally
support for larger amounts of sprites and such, being faster and operating at
higher resolutions are desirable) the DS 3D systems are not that much like
current 3d systems or even that much like past ones. Basically if you knew
all that was to know about GBA 2d and underlying methods you could do 2d
anything but knowing all there is to know about DS 3d and the underlying

97

methods will leave a large gap in your knowledge (the idea of shaders, much of
light re�ection and some of the ideas that have led to shortcuts/approximations
are at best going to be touched upon) although it should not do a disservice to
any future intentions to learn 3d imagery. Learning 3d imagery is quite possible
thanks to the internet and The Guerrilla CG Project put out a nice series that
covers a lot of the basic concepts.

2.4.1 Basic 3d (bones, coordinates, keyframes)

You can do 3d imagery in a lot of di�erent ways and for the most part 3d and
the way 3d is animated is not really possible to separate. In practice it comes
down to keyframes which have quite a lot in common with their 2d counterparts,
morphing which is a hybrid of keyframes and the following and bones which as
the name implies a bunch of jointed (often imaginary) lines running through a
character that can be moved to provide animation (lesser systems using fewer
bones and joints and winding up with things like hands always in a �pistol�
grip).

Coordinates. For the most part the X, Y, Z coordinate (Cartesian) system
appears once more although with two main re�nements either in hardware or
when doing maths on them.

1. The ability to de�ne a line with an angle and a length

2. The ability to have a coordinate system within a coordinate system (helps
when you have a complex shape and do not want to have to worry about
recalculating a lot of points despite them not changing relative to each
other).

Angles and lengths are quite useful as they can be manipulated somewhat more
easily in some ways (the general idea is a line is de�ned at the origin with an
angle to the given axes and a length and then maybe translated which gives
the same information as a set of coordinates but allows easier rotation and
more). Strictly speaking it is not used in the hardware but it often feeds into
the multiple coordinate systems.

Multiple coordinate systems are extremely useful once you get past basic 3d
for as mentioned they allow you to rotate an entire shape and not have to worry
about recalculating all the components within it and deal with odd angles not to
mention it allows for independent animation. For instance consider your hand
when curling your arm it is at the end of your wrist but if you curl your arm
leaving the hand in the starting position and then try to map the coordinates
your hand just passed through it gets horribly complex despite your hand not
changing position relative to your wrist.

In most games made points are de�ned which then become the corners, or
more accurately vertices, of a model and lines drawn between them to make the
image and those points moved accordingly (usually via the bones technique)
although the latest techniques at time of writing are experimenting with a tech-
nology known as geometry shaders where new lines can be generated after an
explosion or something. Back on topic most of the time this line is straight
although some more advanced systems can de�ne a type of line to make for a
curved image (other times you see this it can be textures though) which usually
falls under the remit of subdivision although there is a lighting trick known as
Gouraud shading that achieves a similar e�ect.

98

http://www.youtube.com/playlist?list=PL6A7DF3D7866EB076&feature=plpp

Another type of imagery seen mainly in 3d scanning (medicine and parts of
reverse engineering devices) and certain types of computer modelling (usually
scienti�c in nature) is known as point cloud data where individual points are
used and expanded from there. As you might imagine this can be very costly in
terms of resources which for more real time use leads to voxels where a image is
composed of small boxes or if you prefer the points themselves expanded so as
to meet their neighbours and can be seen in voxelstein3d among other things.

Optional maths lecture on arrays/matrices Arrays are a concept that
arises early in discussions of 3d and programming in general and as they have
some very useful functions they never really go away. With one though you can
e�ectively de�ne in a few numbers a primitive anything really; a 3 x 3 array
stores 9 values which works quite well when you have an X, Y and Z value and
three sets of those can de�ne a triangle (the building block of most 3d images)
and more although the DS favours 4x4 for a lot of things (even if it turns those
4x4 into 3x3 by setting all the but the bottom right coordinate to 0 and the
bottom right one to 1.0) and does not use them for de�ning vertices per se but
the model format might well store things in one. The underlying maths is not
hard it is just not as most people that have previously spent time doing algebra
immediately expect. For some of the more in depth 2d a�ne transformations
the same maths and many of the same concepts will arise.

Both GBAtek and Tonc have more on this with the latter aimed at the GBA
2d.

Still there are a few select concepts worth knowing

� Dot product

� Cross product

� Scalar multiplication

Depending upon your point of view scalars are either regular numbers or a 1x1
matrix.

[To �nish]

The decimal point Floating point was covered back in the introduction and
it is surely not hard to see what the ability to represent numbers after the dec-
imal point is useful in 3d modelling. Combined with the need to do operations
on lots of data all at once (a problem �solved� by the introduction of Single
Instruction Multiple Data/ SIMD instructions) this is why 3d tends to have
a piece of dedicated hardware inside the system and systems will have their
performance measured in FLOPS (�oating point operations per second). The
DS speci�cally tends to eschew �oating point in favour of �xed point using a
variety of di�erent formats for �xed point depending upon the operation.

A couple of di�erent �xed point methods are used depending where you are
1bit sign, 3bit integer, 12bit fraction for a lot of the vectors (usually involving

light and view)
1 bit sign + 3 bit integer + 6bit fractional for the 32 bit vertex set command

(X,Y and Z in the same command each with 10 bits)
1bit sign + 9bit fractional part for the 64 bit vertex set command (X and

Y in one 32 bit command, Z and wasted space in the next) and the commands

99

http://voxelstein3d.sourceforge.net/
http://problemkaputt.de/gbatek.htm#ds3dmatrixexamplesmathsbasics
http://www.coranac.com/tonc/text/matrix.htm

that be used when reusing a previous coordinate (set X and Y but use the same
Z or the other permutations of that concept).

2.4.2 Viewpoints

As well as lighting (covered elsewhere in this section) the idea of the view-
point/camera is important where in 2d both those are something of an abstract
concept at best. As the name implies it is the thing that ultimately decides what
is rendered (3d learned early on you only need to render what the camera(s)
can see) and more importantly can be used for animation (although in practice
bugs in the DS hardware sometimes mean the camera is not animated but the
world instead).

Additionally the DS supports a cuto� value so items beyond a certain dis-
tance will not be rendered (this helps the hardware by having less to do and
likely the resulting image by having things that are only visible as single pixels
not be rendered.

This is where matrices are most prevalent with the principle example being
that of achieving a perspective view. The DS hardware supports either orthog-
onal rendering which is useful for 2d games like New Super Mario Brothers or
games which use it for basic animations (certain RPG battle sequences) or ren-
dering with perspective which is useful for �rst and third person type games
where the camera is behind the player.

2.4.3 Textures and material colours

The earliest 3d just de�ned the points at corners (vertices) and lines (quite often
green or grey) in a process known as wireframe; this is not used much any more
with it tending to be reserved for cheat modes/bonus content, testing out the
game itself and those creating the 3d content in the �rst place so in place of that
there is material colours and textures. This being said many systems including
the DS will still allow the �wireframe� to be coloured di�erently.

Further down the line there are also concepts like bump mapping where the
illusion of surface roughness can be created by assuming another light source on
the object, some systems will have hardware support for this but the DS does
not and any you see will be the result of those responsible for 3d models and
textures calculating such things ahead of time (if you plan to do any work with
DS 3d the idea of precalculation is one that will appear again and again).

Material colours are just what they sound like and the 3d object will be
coloured in according to a given value somewhere, with lighting and shadows it
can look di�erent and with each vertex in the case of the DS being able to be
assigned a colour basic coloured models can be made however it tends to look
a bit plain which brought in the idea of textures.

Textures are more or less 2d images placed over the 3d models or parts
thereof which is more demanding than simple material colours. Unlike palettes
in 2d you can map a texture to a part of a model and then between light/shadows,
certain graphics modes, angles to the camera and fog a �nal image might be
generated that is nothing like the texture colours. To this end with the pixels
that make up a texture not being quite what it will be in the �nal image they
are known as texels instead. Also available is alpha blending with the material
colours so the texture and the material colours combine to create an image.

100

w8_bridge.nsbmd is a nice example here.
First image is what it looks like, second is without the texture.

Also worth noting is 3d has seen several titles allow the player to create
their own textures with Mario Kart being on the more notable ones and other
common ones include clothing games and games like the sims. There has been
a bit of this in 2d as well but not half as much although for the most part
textures will tend to manifest as 2d images anyway (certainly some editing has
been done with 2d tile editors where necessary).

This brings a secondary issue up that developers and hackers alike have long
had to think about when attempting to map a 2d image to a 3d object. Doing
as such tends to make for some distortion so models will tend to be painted in
3d with a program and then converted to a 2d texture for storage; for more on
that subject �Texture unwrapping� and �UV Mapping� are good search terms.

DS textures When being editing many will resemble custom size 2d formats.
Equally much like 2d there are additional options and textures can be repeated,
�ipped and more.

GBAtek has more on the various methods and although at times they re-
semble things seen in the 2d palette/tile world other times see something quite
custom in comparison.

2.4.4 Models

Basic constructions
There is the idea of a 3d primitive although this takes two forms with the

likes of the DS and truly low level hardware and more general 3d modelling.
The DS hardware uses four concepts

� Triangle (three points de�ned anticlockwise)

� Quadrilateral (four points de�ned anticlockwise)

� Triangle strips (three points de�ned anticlockwise to start with and then
either up down or if you prefer clockwise anticlockwise)

� Quadrilateral strips (four points de�ned �up and then down�)

Straight lines (line segments) are usually made by setting two of the points in
a triangles to the same value. Equally although there is little in the way of
support for or need for subdivision on the DS quite a few models eschewed the

101

http://problemkaputt.de/gbatek.htm#ds3dtextureattributes

reliance on triangles that marks most game consoles apart from conventional 3d
modelling which opts for quadrilaterals instead.

Although more conventional 3d modelling recognises those types as prim-
itives (and if they are not primitives they are certainly fundamentals) on top
of this and when dealing with slightly higher level ideas there are three other
primitives

� Spheres

� Cylinders

� Cuboids

Either way when reverse engineering a model should developers have been kind
enough to leave a selection of these primitives and when reverse engineering a
format seeking these out and/or creating them is a useful step but more on that
later.

Parent and child This is often where the idea of multiple coordinate systems
comes into play.

The basic idea is there is a primary set of coordinates known as the world
(although do note some call the entire level the world and it is a separate
concept) and from here several extra coordinate systems can be de�ned and
known as children; children can have further children but are each tied to the
parent going right back to the world.

It becomes useful as having a large level and de�ning it only to want to move
an item within it or worse it relative to another item it touches can get to be
a nightmare very fast and even more so when there are say 300 points de�ning
that item which all have to be accounted for possibly using a coordinate system
with an origin several hundred of a given unit from the location of the model at
the time.

2.4.5 Lighting/shadows

Where 2d is inherently assumed to be lit, indeed the whole colour scheme is
designed around di�erences in brightness of the component colours, lighting
and shadows as an extra concept do not really exist but most 3d systems will
allow the phenomenon to me modelled and so lighting and shadows needs to be
discussed.

Theory There are three types of light re�ection known as specular, di�use
and emissive and the DS supports all three in hardware. Where light is blocked
it makes shadows and where it is partially blocked it changes the colour of the
light coming in but the DS has very limited support for both of these concepts.

Light There are the three sources and they all combine to make for im-
ages humans are used to seeing. Although the DS supports them most of it is
precalculated/nice approximation. Approximation however is common in much
of 3d regardless of where it is at.

Specular This is the traditional concept of re�ection where a single beam,
provided it is below the critical angle for a material, will be re�ected out.

102

Di�use This is the �scattered� light as often seen in crystalline structures but
many materials will have a measure of di�use re�ection.

Emissive As the name implies this is light generated by an object.

There are also three types of light source and although it is key to most light
modelling which are a spherical source (light in every direction and dropping in
intensity with distance), a conical source (light expanding as a cone with dis-
tance and also dropping with intensity) and a tube/parallel source (think laser
beam where a single set of parallel light beams and not dropping in intensity
with distance). They are not quite so key here as only the parallel sources are
available to the DS although there can be multiple ones coming from various
locations and are re�ected accordingly. GBAtek also notes that the DS di�use
light engine is bugged and does not re�ect properly if the camera is turned so
in those cases di�use is not used or the entire world is rotated instead.

Shadows If there is light there must be shadows to go with it. The DS
lighting engine provides only light to the camera but it does have the ability
to generate shadows as separate entities too. As mentioned in 2d the lack of
shadows is fairly notable to the human eye but it can be placated by adding a
simple circle shadow a lot of the time.

DS basics The DS supports light in the three forms although it is only re-
�ected to the camera and not to other objects. As mentioned it does however
provide the option to make shadows using a polygon so developers can precalcu-
late shadows and add them to images and they often choose to also add a basic
shadow (no shadow is quite noticeable but even a basic blob/circle shadow will
help believability).

2.4.6 3d smoke and fog

Although in real life the fog and smoke are roughly treated as similar concepts as
far as physics modelling is concerned in games the di�erences are quite extreme
although developers have often been known to make one stand in for another.

Fog is most commonly associated with draw distance and indeed is usually
there to make up for the hardware being unable to draw far enough ahead in
real time although games like Silent Hill used it as part of the gameplay. It
should be noted though that developers will also do things like make winding
corridors, use a skybox, make things have trees/buildings either side of the level
itself and use low light conditions to mask the inability to draw at long distances
to say nothing of things like mip mapping and 2d overlays but more on that in
animations and developer tricks in part 3.

Back on topic the DS hardware has a fog option as do most other 3d hard-
ware/engines that aspire to be useful; it provides the ability to de�ne fog colour
(including alpha), location and density (typically to allow for things to fade out
but not restricted to it).

Smoke Assuming it is not the result of the fog engine being used most smoke
is a simple 2d animation maybe as a texture to an item with an animated
texture or as conventional 2d imagery. On other computers there have been

103

several smoke generation algorithms that are considerably less demanding but
they are usually well out of reach of the DS and certainly not supported in
hardware.

2.4.7 Animations

Basic animation was alluded to elsewhere but it takes three main forms.

Bones animation The traditional transformation types of rotation, scaling
and translation return and provide most of the ideas here.

Texture animation Textures can be added, removed, have their level of al-
pha changed, combined with other textures (the result of an explosion say),
have mirroring and expansion/scaling turned o� and on more advanced systems
which does include the DS the texture origin can be changed creating a similar
e�ect to the scrolling BG from 2d animation. Also why go to the e�ort of un-
coupling the wheel from a car and making it move when you can just rotate the
texture of the wheel (or indeed just have a white shiny line move up and down
or �icker).

Camera animation Much like real life although you can rotate the entire
world to have something appear upside down it is usually easier to change turn
the thing viewing it upside down and similarly for the other types of trans-
formations. The do remember the bug with rotation on the DS and di�use
re�ection (if a camera does a Dutch angle then it is probably the world that
rotated instead).

Clipping Yet another area worthy of a section to itself. 3d by itself is just
an imagery method and the camera itself can go anywhere within the space
provided without restriction. Naturally this is not desirable for games so clipping
comes into play and it can take many forms with some hardware and game
engines even providing a measure of support for it. Sometimes clipping can be
detected by using the 3d hardware itself similar to some level systems that use
OAM for 2d but on the DS much of the time it is another �le that will mirror
the level (as a developer it is not terribly hard to generate one if you have the
level sitting in front of you) will be made instead with a nice example being
the KCL format used in many �rst party Nintendo games like the Mario Kart
series.

2d overlays Although things can be done in 3d all proper 3d systems will
work with the 2d hardware as well ranging from things as simple as skyboxes
where the horizon is visible but rather than being a single colour there will be a
2d image placed on it of what the horizon would look like (or the sky above it)
and as it is incredibly far away at this point. Some 2d engines go a step further
than this and will replace actual objects in the distance with 2d representations
and swap them out for 3d as the distance to them becomes less.

Others rather than creating a full model of a plant (traditionally quite a
hard thing to do and demanding once it is done) will instead make a very thin
box, make it transparent save for the plant and display that. An example of the

104

idea can be seen in the map_point.nsbmd from New Super Mario Brothers on
the DS.

In fact it is the little marker for the levels that have been done from the
world map show as it is in the game, as wireframe and as it is without a texture.
Note also the potential for a specular highlight which in in this case is done in
textures.

Animations can also happen here and smoke or sparks can be simple 2d
animations set to a given point.

Basically regardless of what is done 2d imagery plays a serious role in creating
3d worlds. Speaking of that it ends up as 2d in the case of the DS.

2.4.8 DS 3D hardware

GBAteka lot of detail on the subject but the basics behind the 3d hardware are
worth knowing about.

The general idea is that there is a geometry engine and a rendering engine.
The geometry engine is what the DS communicates with and it calculates the
changes required before passing it to the rendering engine (a process triggered by
a Swap Bu�ers command) which puts everything together and makes a picture
out of the result or would but rather than an entire rendered frame (otherwise
known as using a framebu�er) only 48 lines are rendered at a time and put into
a cache.

Communication is typically done via write only registers starting at 4000330
hex and ending at 40006A4 hex, the display control register for 3d (DISP3DCNT)
is however found at 4000060 hex and controls what modes are selected. Buried
within the 3d IO range is the geometry command range which is either accessed
directly or send a series of commands via the GXFIFO arrangement where ge-
ometry commands can be called by type instead.

Although some maths can be done it is a fairly low level arrangement and
there is little in the way of high level constructs compared to say programming
for a modern PC or console targeted 3d game engine where models themselves
are essentially data types.

Matrices The DS emulators desmume and no$gba dev version will allow you
to view the matrices.

105

http://problemkaputt.de/gbatek.htm#ds3dvideocontains

Although there is a matrix stack which allows things to be swapped out in
very short order there are four main ones that are useful at any one point in
time. Once you know the Direction matrix refers to the light direction most are
fairly self explanatory and if you recall a�ne transformation and mode7 from
the 2d side of things most of it drops into place.

Still

Projection handles the change between orthogonal and perspective view and
although those are the main two it can handle everything in between.

Position handles the ultimate locations of vertices

Direction used for light and the testing vectors (light is the most commonly
handled).

106

Texture handles the texture mapping using the texture modes the hardware
supports.

They are set by selecting the mode by writing to 4000440 hex aka the MTX_MODE
register aka command 10h after which there are write matrix commands, read
commands (for clipping), various multiplication and read as well as stack han-
dling commands.

GBAtek covers the basics here.

2.4.9 The shift of the 3D to DS 2d

As mentioned the 3d hardware is not addressable directly in memory and it is not
really tied to the screen rendering so the resulting frames from 3d rendering are
turned over to the BG0 layer of engine A where it can have the usually selection
of overlays and sprites done to it (many games will also render a 3d background
to put behind the game). This being said the BG0 can be further transferred
(with a speed penalty) and used elsewhere with the typical destination either
being engine B or the capture hardware. By shifting layer priorities this is how
a lot of ostensibly 2d games (like Castlevania) could use the 3d hardware to
render a 3d background and have a conventional 2d game run on top of that.

2.4.10 NSBMD

NSBMD is the standard SDK 3D format and format used by a lot of games, that
said some appeared before NSBMD became �nalised and others like some Yu Gi
Oh games have their own custom format. It has also been seen a couple of times
with the textures mapped to a simple square in title screens and as mentioned
elsewhere some ostensibly 2d platformers like New Super Mario Brothers used
the 3d systems to in place of 2d sprites; note this is not Rare's SNES Donkey
Kong or Resident Evil style prerendering but actual 3d movement restricted
to a 2d world. It also led to the introduction of �2.5D� but that is a di�erent
discussion.

The basic idea is that NSBMD is a 3d coordinate driven format with support
for materials colours, textures, points to hook in for animations and not a lot
else. It is sometimes �anked by the formats NSBTX (optional textures) and
NSBCA (animations) where necessary and you should probably also remember
the BMD or BMD0 is the actual model contained within (it shares a stamp with
3d formats for the gamecube and wii in this regard). Much like most things on
the DS it is quite close to the hardware it ends up on in many ways.

Tools and speci�cations

� nsbmd tool

� kiwi.DS NSBMD specs

� lowlines specs (also NSBTX and NSBCA)

� lowlines's the console tool

� tinke

� mkds course modi�er

107

http://problemkaputt.de/gbatek.htm#ds3dmatrixloadmultiply
http://filetrip.net/nds-downloads/utilities/download-nsbmd-tool-10-f28230.html
http://kiwi.ds.googlepages.com/nsbmd.html
http://llref.emutalk.net/docs/?file=xml/bmd0.xml#xml-doc
http://llref.emutalk.net/docs/?file=xml/btx0.xml#xml-doc
http://llref.emutalk.net/docs/?file=xml/bca0.xml#xml-doc
http://llref.emutalk.net/projects/ctool/
https://github.com/pleonex/tinke
http://gbatemp.net/topic/299444-mkds-course-modifier/

� NSBTXExtractor

Nsbmdtool is the tool created from the �rst attempts at reverse engineering the
NSBMD format and although it lacks the ability to render quite a lot of imagery
since discovered it has the ability to parse 3d models and give locations of the
models, textures and similar ideas contained within the format which means it
is still invaluable for editing models be they from new or old titles.

lowlines' console tool is a newer attempt at reverse engineering the speci�-
cations and did better than nsbmdtool in a lot of cases.

Tinke includes a texture viewer and later versions include a model viewer as
well as a great human readable version of the events.

MKDS course extractor includes NSMBD viewing features and some manip-
ulation ability.

NSBTXExtractor is mainly aimed at texture extraction but it works on a
lot of things and simply being able to extract textures helps in a lot of cases.

There are additional tools but they are usually game speci�c save editors and
the like (mario kart emblem editors, Animal crossing texture editors in saves
and such).

Basic NSBMD hacks

There are four main hacks done here although many of them translate to the
other 3d formats as well.

� Filesystem hacks

� Texture modding hacks

� Scale and minor tweaks

� Full injection/modding hacks

Filesystem hacks are many and varied but were seen early on in the likes of
the Mario Kart course hacks (it was mentioned elsewhere but Mario Kart used
a KCL format for the track layout so unlike many games on more powerful
machines simply editing the model does not do much) and several hacks since.
Note that animations and textures can often be tied to a given model and odd
things can happen if they are changed with some good examples being seen in
some of the Super Smash Brothers hacks for the Wii. Occasionally injection
from other games was attempted although it usually works better when it is for
a similar franchise.

Texture modding hacks are not that common but equally they are not that
hard. Generally a combination of something like nsbmdtool, tinke and looking
at the speci�cations will allow you to direct a tile editor to the appropriate
location, get the required dimensions (they are usually a simple multiple of 8
for each dimension but not always) and get the appropriate palette sorted which
allows for conventional 2d editing. By similar logic palettes and any o�sets for
the textures can also be edited.

Scale and minor hacks. With 3d models being tied directly to the points
that created them minor hacks are quite possible if the would be hacker can get
a handle on the layout of the layout of the model in the �le.

Full injection uses various techniques ranging from using leaked parts of the
nitroSDK (parts were leaked and that included plugins for older versions of

108

http://filetrip.net/nds-downloads/utilities/download-nsbtxextractor-10-f29535.html

several industry standard 3d modelling programs such as 3ds max, maya and
Softimage 3D/XSI which exported �les to an intermediate format and conversion
software for that intermediate) where others have done things like export images
into a human readable format and between viewers and hex editing managed to
change models enough to count as a full injection hack. At time of writing there
is nothing resembling a high level editor of models themselves either standalone
or via plugins.

Example of minor hack

The following is a quick example of a minor model tweak. �map_point.nsbmd�
from New Super Mario Brothers will be returned to as it only being four vertices
means less chance in being bogged down with a complex model. The model could
be worked up from the speci�cation but Tinke provides a nice human readable
output

polygon0 is the item of choice and following it should be the commands.
Note that as it is a �at square and thus shares some coordinates from point to
point the smaller 3d hardware commands can be used to generate it, should the
points be di�erent on all three coordinates then longer commands will need be
used.

109

Might as well change a single vertex to begin with so 01D9 was changed to
80

Wireframe of the modded version and the original version

110

With textures

Basic texture viewing hack

Textures are usually just stored as 2d images of some format, although do
remember it might not be a colour format commonly seen in regular 2d editing
(see the hardware notes for DS 3d textures). This is not usually so bad for much
like editing without the proper palette by using a somewhat abstract method
(if you know this green corresponds to that red in the image it is still possible
to edit) a tile editor is little more than a hex editor that shows coloured pixels
instead of letters and can arrange it in a few more orders, just make sure you
have all unique colours if you do this or you risk getting quite confused. You
could try exporting the texture in something to a bitmap format and importing
the palette from that as well.

Game is Fire Emblem - Shin Monshou no Nazo Hikari to Kage no Eiyuu. It
used (as did most DS �re emblem titles) 3d textures to help with 2d images.

File is title_logo.md (the series has the curious habit of using only the last
two letters from the SDK extensions) from title12 directory.

111

NSBMDtool output
Nsbmdtool, despite being old and not working on a lot of NSBMD �les, can
provide some useful output.

112

Tinke output
Tinke provides two windows with useful output information.

113

Palette �nding Plenty of information was given but no direct address of the
palette in question.

The palette o�set is given at 38 hex in the TEX0 section.

TEX0 starts at 1E30
Palette set to 0001 AA68 (within the tex0 section)
This gives 0001 C898 as the start of the palette section. It is not however

the �rst palette in the palette section (it is the third although numbering starts
at 0 so 2 is the actual number if using internal logic)

Tinke says 13E0 which needs a shift/divide by 2 to get 09F0. Adding that
on gives

0001D288 hex

Crystaltile2 �ltering Setting the appropriate locations as given in tinke and
the nsbmdtool output.

The o�set was given by nsbmdtool and tinke. 16 colours aka 4bpp.

114

Setting the palette.

From here it is so much basic image editing although do note the gradient.
It looks like there is a periodicity in the X direction after a fashion (there is odd
shading within the characters on the shorter widths) but vertical give or take
shorter widths that trouble the X direction and the marks above the second
and third from the right could be made to have a constant. Certainly though
it would be quite possible to make a layer mask after recreating a more basic
version of the gradient.

Command decoding aside

Returning to map_point.nsbmd from New Super Mario Brothers and some of
the commands decoded as a quick example. Once again Tinke provides a nice
human readable output

115

Being a single quadrilateral it is de�ned anticlockwise with the �rst command
being point 0.

Point 0 Cmd 24 hex aka VTX_10 sets the vertex coordinate with 3 ten bit
(signed bit, 3 bits, 6 bits fraction) with the upper 2 bits ignored.

19028270 hex
0001 1001 0000 0010 1000 0010 0111 0000 binary
Splitting it up
� (the two skipped bits)
0 110 010000 = + 6.25
0 010 100000 = + 2.5
1 001 110000 = - 1.75
Z
Y
X

Point 1 Command 25 hex aka VTX_XY is just two points with the Z point
taken to be the same as the previous.

Full bits used (0 to 15 being X, 16 to 32 being Y)
signed, 12 bits given over to the fractional part
28006400 hex
Splitting it up
0010 1000 0000 0000 0110 0100 0000 0000 binary
0 010 1000 0000 0000 = + 2.5
0 110 0100 0000 0000 = + 6.25
Y
X

Point 2 Command 26 hex aka VTX_XZ assumes the Y point is the same as
the previous and sets the X and Z. Same bit breakdown as the other two point
commands.

9C006400 hex
1001 1100 0000 0000 0110 0100 0000 0000 binary
Splitting it up
1 001 1100 0000 0000 = - 1.75

116

0 110 0100 0000 0000 = + 6.25
Z
X

Point 3 Command 25 hex aka VTX_XY returns
28009c00 hex
0010 1000 0000 0000 1001 1100 0000 0000 hex
Splitting it up
0 010 1000 0000 0000 = + 2.5
1 001 1100 0000 0000 = - 1.75
Y
X

2.4.11 Non NSBMD

Although NSBMD is a pretty good format developers have attempted to make
their own for various reasons including additional features the NSBMD format
might well lack, what has been seen says most of the SDK for it requires the
use of certain expensive (although industry standard) modelling packages, ports
from other platforms (although no conventional high level formats of any form
have been seen thus far and any that are seen are more likely to be a devel-
oper left extra) or that NSBMD was not �nalised at this point (Metriod Prime
Hunters being a good example of this and also one of the earlier tools for it in
DSGraph).

As has been mentioned a few times and will be a few more before this is
done the formats the end product will use in embedded systems will try to stay
reasonably close to the hardware that will eventually use them (see things like
custom audio formats on the DS tending to be wrappers for PCM or ADPCM
audio which is what the DS hardware supports) which is why the hardware itself
was covered and NSBMD given a section rather than it being the main focus of
3d hacking. It did not use standard 3d formats but model swapping was still
able to be done.

Yu Gi Oh WC 2011 An attempt to rip the models from Yu-Gi-Oh World
Championship 2011 soon revealed the game be one that did not use the NSBMD
formats and what was there did not look especially like the sort of thing NSBMD
is usually brought in to handle.

After breaking through the wrapper formats to reveal NARC and after ex-
tracting that many �les were obtained with an example being

m8970_matanm.bin
m8970_mdl.bin
m8970_mdlanm.bin
m8970_texanm.bin
Most groups were just mdl and mdlanm �les with the occasion extras having

texanm and matanm which a quick playthrough of the game makes sense as not
all creatures have complex animations. mdl presumably expanded to model
and the others were likely model animation, texture animation and material
animation. There was also a single visanm �le. A strings search on the smallest
�le and other mdl �les yielded some interesting results

117

http://filetrip.net/nds-downloads/utilities/download-dsgraph-10-f29517.html
http://gbatemp.net/topic/109587-model-swapping-in-soma-bringer/
http://gbatemp.net/topic/322715-yu-gi-oh-world-championship-2011-model-ripping/
http://www.youtube.com/watch?&v=ccqzbFvC3Vg

m7091_mdl.bin was the smallest �le and it had strings like pSphere and
pCylinder inside it where others were named things like arm and wing as well
as a lot of romanised Japanese names for similar things and 3d concepts (Blinn
(phong) and Lambert among other things).

The smallest �le and names pointed directly at developer left extras (circle
and primitives) and where trying to �gure out mappings that might be rotated,
scaled and assigned assorted parent/child relationships and coordinates could
be tricky knowing how a basic set of primitives worked could prove useful for
further reverse engineering.

The format header was further reverse engineered.
[To �nish]

2.5 Notes and further reading

Games usually account for it but so as to be able to deal with it should the
need arise the �bezel� between the top and bottom DS screens is taken to be 90
pixels.

GBAtek DS video block diagram
Worth studying a bit for although it can slow things down to use anything

other than the shortest method to output sending it round the capture a time
or two can create some interesting e�ects.

A collection of a few hardware and software coding links
Cowbite GBA video. Cowbite was at one time a document linked alongside

GBAtek for GBA hardware discussion.
GBAtek DS video. For the most part it is similar to the GBA but that

covers what di�erences there are.
TONC on GBA video. A nice worked example of how a lot of the GBA

video hardware works and it is not that di�erent for the DS.
TONC. A GBA programming tutorial but covers a lot of the concepts un-

derpinning things.
pineight.com VRAM streaming technique. Covers methods by which the

limitations in the GBA VRAM size can be overcome.
General graphics programming
gamedev.net has a nice guide to a lot of graphics editing although it gets a

bit low level at times.
The Guerrilla CG Project has a series of fairly short videos that cover the

basics of 3d. There is also another video covering UV mapping for textures.

118

http://problemkaputt.de/gbatek.htm#dsvideodisplaysystemblockdiagram
http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm#Graphics%20Hardware%20Overview
http://problemkaputt.de/gbatek.htm#dsvideo
http://www.coranac.com/tonc/text/video.htm
http://www.coranac.com/tonc/text/toc.htm
http://pineight.com/gba/managing-sprite-vram.txt
http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/graphics-programming-black-book-r1698
http://www.youtube.com/playlist?list=PL6A7DF3D7866EB076&feature=plpp

3 Text

Games can and have stored their text as simple graphics but developers learned
quickly that for longer games this is not very helpful at various levels so games
have long featured text decoding and display engines. Said engines are very
often highly custom things with various abilities and restrictions that people
hacking them have to �gure out and are second only to the game level �les and
assembly in terms of how custom things can get. Games still have text in the
images they might display, very often for low text games like puzzle games but
not always and anything highly stylised is probably graphics, and conversely
some early hackers altered the encoding of characters to have them appear as
others in certain places (often messing up the text in the rest of the game).

Never the less text engines are very much a part of games now and as such
aspiring ROM hackers have to know how to deal with them. Know that games
can and do often enough use multiple versions of the following concepts within
the same game and even on the same screen at once.

3.1 Tables

More recently there have been e�orts to turn tables into a higher level concept (
Table �le format proposal) which is good as it allows for easier hacks in the end
but classically speaking tables are just simple text �les containing a long list
of hexadecimal numbers of various lengths and what they represent in readable
text. One of the other reasons for the proposed standard above is there are
several types of table �le format with varying abilities.

There is nothing to stop one character from being encoded multiple times
(indeed it is often done as a cheap way of doing bold, small, italic or otherwise
stylised text), encoding multiple characters in a single entry (a process known
as dual or multiple tile encoding) and or even mixing 8 bit and 16 bit encod-
ings/character sets together (this troubles a lot of simpler text readers/decoders
as they expect everything to be of one length and maybe even alignment).

Normally they would all be on separate lines but for the sake of readability
here is a sample of encoding used by Golden Sun Dark Dawn's �kiaro1212� font

Most conventional hex editors will not really support tables/custom encod-
ings in a manner useful to ROM hacking (that is to say easy to load a single
�le with a full custom encoding, several will support changing the odd charac-
ter though) so we have ROM hacking speci�c hex editors with the main ones

119

http://transcorp.parodius.com/scratchpad/Table%20File%20Format.txt

being Transhlextion and WindHex32 although they lack some of the features
of a more general hex editor like Hex Workshop. Crystaltile2 and some of the
related tools do have a measure of table support as well.

Table creation and �guring out custom encodings

There are several methods used to �gure out the text encoding for a game. The
�rst step for anything like it though is to check to see if it uses or uses enough
of a known encoding to start getting things done.

As far as ROM hackers are concerned this branches into three types

1. Known conventional encodings - things like ASCII, shiftJIS, euc-JP, UTF
16 unicode and UTF-8

2. Known game and game company encodings - Capcom have a table used
in several of their games and games with Japanese tables often using frag-
ments of existing encodings (be it from other games or conventional en-
codings).

3. In the case of the DS the NFTR font carries the encoding information for
the font inside it and other formats doing similar things have been seen
as well. In many cases you can pull a table from it but other times you
will have to manually create one using the encodings (or use OCR)

Although it is rarely seen any more games can do a type of compression where
if the �rst hex character/byte is repeated in a 16 bit value the game can take
one 16 bit value and assume all the following ones are also to be decoded with
the �rst hex character/byte until told otherwise (for instance in shiftJIS the
entire Roman alphabet, Hiragana and katakana will have the �rst byte as 82 or
83 even though it allows for a 16 bit encoding). A second interesting concept
that is also rarely seen these days is games can swap out encodings at will by
signalling as such but do not get hung up on this as it is very rare indeed (it is
far more likely to be something else).

A note on Unicode. Joel on Software's unicode post details a lot that
is good to know about the encoding standard known as Unicode. Now unlike
the fairly simplistic encoding that most games use Unicode is actually quite far
reaching and not necessarily hard to implement but not a simple translation of a
set length of hex to a known character most of ROM hacking is concerned with
(any fancy extras usually being a set option that the coding team gets the call to
deal with). There is however a simpli�ed version of Unicode that forms the basis
of a few encodings in ROM hacking known as UTF16 Unicode (sometimes u16
Unicode) that is always 16 bits (no �ags or other such things) that is de�nitely
worth knowing about as games tend to use it; in short it eschews the abilities
like right to left text and variable length characters in favour of set 16 bit lengths
and as far as most games are concerned no extras. Still if you want a nice tool
to help with it have a look at The unisearcher.

Assuming it is not a known encoding or a known encoding only accounts for
part of it after this you have to actually �gure out what is going on.

There are several ways of doing this ranging from simple and not unreliable
but not universal (especially as far as Japanese goes) to complex but will �gure
anything out. Combining methods here is not only a good idea it is suggested

120

http://www.asciitable.com/
http://www.rikai.com/library/kanjitables/kanji_codes.sjis.shtml
http://www.rikai.com/library/kanjitables/kanji_codes.euc.shtml
http://unicode.org/charts/
http://unicode.org/charts/
http://www.utf8-chartable.de/
http://www.joelonsoftware.com/articles/Unicode.html
http://www.isthisthingon.org/unicode/index.phtml

and encouraged. There is quite a bit of overlap between �nding the text in the
ROM itself and �nding out how it is encoded with various methods if not doing
both at once then seriously aiding the other.

3.1.1 Relative searching

Going back to the Golden Sun table and looking at the Roman character side
of things

41=A
42=B
43=C
44=D
45=E
46=F
47=G
48=H
49=I
4A=J
The word BAD would be encoded as 424144
If you then searched the ROM of better yet a �le you suspect of being text

(assuming you had no compression or had dealt with it) for any strings with
one value and the next one lower and the new two higher than the original you
will quite often get the text you want. Most relative searching tools are 8 bit
but you can get 16, 24 and even 32 bit relative searching tools.

There are several tricks and things you can do to make you more likely to
get what you need.

� If you suspect a variable (value of something in a shop, character name if
you are allowed to customise it, amount of HP and so forth) or you see
some e�ect being applied to the text (even if it is just bold or italic text as
games will not render fonts as standard computers do but have multiple
characters) try somewhere else as it will likely be something else entirely
in the text (see markup and placeholders a few sections later for more).

� If you see something that might be dual tile encoded (character names
often are even if you can not change them) or is a symbol (� for example
and games will quite often encode their yes/no selection as a single tile)
try something else.

� Longer (to a point) is better, three characters as in the example above is
pushing it and �nding two characters is at best going to leave you with a
lot of stu� to wade through to �nd the good stu�.

� If the text looks to be split across two sections avoid it or shorten the
search.

� On a more positive front you can live dangerously and search for a common
phrase (the word �the� with a space either side of it is very likely to
appear in English text) or a game speci�c one (moogle in Final Fantasy
for example).

121

� Japanese does not feature ordering in Kanji and kana only have a weak
ordering (to say nothing of odd things games do for Handakuten and
Dakuten) but you can get some things done if you suspect an ordering
(font order and encoding order are quite often the same).

Many ROM hacking text grade hex editors tools feature relative search but for
the purposes of this guide there are two main tools you will want to look at

Monkey Moore Monkey Moore github page
Monkey Moore �letrip downloads
A standalone relative search tool and one geared towards this sort of thing

(where others are often very much simple implementations of the theory/search
technique this has a few more options and works better with language).

Crystaltile2 Filetrip download
In some ways not as polished as Monkey Moore (you can have a fairly well

realised table from Monkey Moore inside 30 seconds where you would struggle
to do that with this) but it does feature a nice 16 and 32 bit relative search you
can use.

Examples of relative search The game of choice here is Megaman ZX,
although the table has actually been seen in several Capcom games. By chance
the lower case letters in the table line up with the ASCII upper case equivalents
which means relative search is probably not that useful, give or take a minor
shortcut in table making. However it is a bit less abstract than some other
tables so it makes a good example for this.

122

https://github.com/rjricken/monkey-moore
http://filetrip.net/pc-downloads/applications/download-monkey-moore-05-f29133.html
http://filetrip.net/f23649-CrystalTile2-2010-09-06.html

In monkey moore

A search using a wildcard in an older version

123

Later versions included kana support using the Gojuon order (although you will
probably want to do wildcards between characters to allow for 16 bit entries). It
is not always viable thanks to the Handakuten and Dakuten (extra marks added
to Kana to indicate pronunciation) but it is one of the few occasions relative
searches might work in a reasonable/non esoteric manner with Japanese.

Crystaltile2 relative search
Available in the hex editor window from the tools pulldown menu.

Usage is fairly self explanatory and you can double click results to set location
in the hex window. It will save those results to a text �le similar to the results
page which allows you to direct a more conventional table creator.
You can enter Japanese characters as well although unicode as opposed to

shiftJIS is the standard method
It also has a slightly more functional value search than even the later versions

124

of monkey moore. Usage is set the options how you need them in terms of length
and entry type and add characters one at a time before pressing search.

Note also the second to last visible result and consider it a reason for wanting
longer search terms.

125

The Monkey Moore search was used to create a table and it was then imported
into crystaltile2

It is not yet complete owing to the missing punctuation but that is where the
other methods come in. Here it is fairly obvious that 07 hex represents the
apostrophe character and 00 represents space leading to

126

Having a look at the font for the game there is a lot more to it than that so
other methods will have to be employed

Regarding the buttons seen in the font the Japanese font is a 16 x 16 ar-
ray so the game probably accounts for this somewhere (complex font formats
with individual characters being assigned a size5 are quite possible on the DS)
but there have been instances of half a character being encoded in two �sep-
arate� characters to be assembled at runtime. Note this is not the same as
dual/multiple tile encoding (covered later) where multiple characters or indeed
a run of them is encoded in the same space as a regular character.

3.1.2 Corruption and alteration

Corruption is a general purpose technique where you corrupt sections of the
ROM before running it and seeing what breaks. If you �nd a text �le by this
or some other method you can then change things and either by seeing the
surrounding text you can see what the text either side of it is encoded as.

On the less crude side of things comes alteration where you can do things
like put a run of a single character in the �le and then when you encounter
a long run of them you know what that character is (which might well leave
you in the position to have the rest of the encoding) or you can put a section
counting up so if you encounter text that now reads say fghijklm you might
well know a few things (this can be further re�ned by putting things in a non
repeating pattern of some form to allow you to easily align things, something
like ABBCCCDDDDEEEEE...... for instance).

5In practice it is easier to have identical size tiles and then include a size elsewhere for
the game to account for at runtime as the game would likely already be doing calculations on
widths but there have been instances of games doing uniquely sized tiles for each character.

127

This process can be troubled as text engines can be quite picky about their
content and if you mess up section markers and other would be formatting
things can start going very wrong but if you do not corrupt enough of the game
�nding what went wrong is harder.

Once you have some characters though you can start changing things and
noting what you change before matching it up and gaining the complete en-
coding. Indeed this is often one of the better ways to �gure out what di�erent
symbols and punctuation type things are encoded as. In encryption attacks like
this often fall under the remit of known plaintext and chosen plaintext but more
on those later.

Megaman ZX again
This game was loaded and the text that loads within a few seconds of the

game loading was sourced. It also makes a good case study why variable width
fonts and line handling are good but fonts in a couple of sections time.

The text in a hex editor

128

Say the interest is �nding out what goes past z (5A=z from the table earlier)

Original and modi�ed

z was started with to give a reference point which means {|} are 5B, 5C and 5D
The 01 was left as it could have been something the game relies on, apparently
it was a exclamation mark so add that to the list.
Then a space was left and it starts again with tilde, middle dot or maybe a
bullet symbol, Euro symbol and it carries on.
Either way this is more information than might ever have been gathered with
basic static analysis; not many occasions in text use a two dot leader and what
could well be a triple prime/triple quotes (whether the game would use the
triple in place of double quotes and a single quote for a quote within a quote as
a workaround for the �xed width font is left for others to debate).

129

3.1.3 Memory viewing and corruption

By the time you see the text on the screen it has probably been in the memory
for several seconds and will tend not to be refreshed from memory once it is
there (VRAM yes, actual memory not so much) so editing it there is usually
of little use, with the possible minor exception of a game that allows you to
scroll back through the last few lines of text. The big exception to this though
is name entry screens which are often updated in real time. Equally the saves
�les they make can also yield information as they will tend to be encoded in
the same manner which allows similar things to the corruption and alteration
techniques above.

If you manage to catch the data in memory before it gets turned into graphics
you might be able to do something though. Equally memory viewing/editing
can be quite useful if you are otherwise having to deal with a custom compression
type you have not yet managed to �gure out (or written a compression tool to
recompress), here you would snatch the uncompressed/unencrypted text from
the RAM (remember when working in a group that once the translation/text
editor side of things has the text they can get going and the ROM hacking
speci�cs can be ironed out later).

Example from Mr Driller 2 on the GBA. Cheat �nding methods were used
to narrow down what memory locations changed as a character was entered and
by increasing the character by one value each time it was noticed a particular
value increased by 1 each time.

Pointing the memory window at it. There were a lot of changes noted
here but 02001CDC displayed interesting changes and perhaps more interest-
ingly the blank character at the bottom right was quite far in value from the
smiley face before it. In this case relative search actually worked on the ROM
and it turned out it was quite di�erent (upper and lower case available and
decoded as a di�erent set of values- 0A=A and 24=a) but the potential of the
method is quite clear to see.

130

3.1.4 Frequency analysis

The most common character in a section of text is usually the space character
and in most languages words rarely make it past the 12 letter mark so if the
most common character is on average less than 12 characters apart and rarely
has two together you probably have the space character; from here you can use
other methods or try �lling in the blanks if you have some text from the screen
in front of you. Space might not be that useful to search for so consider instead
that e is the most common character in English.

131

Do remember to restrict any frequency analysis to just the text section or
you might end up with 00 if it is used to pad out parts of the header. Also
remember that it does not have to be exact as there are things the game might
miss or include that are not strictly part of the script but are contained within
the script section never the less.

Example using the MegamanZX �le from earlier (limited to a portion of the
text)

00 which is known to be space is the most common
69 which translates a lower case e (remember the upper case ASCII lined up
with the lower case in this custom encoding).
The next few characters are largely composed of the lowest scoring letters in
scrabble (1 point characters being E, A, I, O, N, R, T, L, S, U).
The FC value will probably want to be investigated further.

132

Doing a search for 00 gives a good indication that it is indeed the space character.

3.1.5 Language analysis

Not everything has to be programming related and knowledge of how words are
constructed in a language and how punctuation is used can be just as powerful
as any technique originating from a programming point of view. For instance
in English the letter u almost always follows a q character and every word has
a vowel in it bar some words which tend to have a y instead (try, �y, rhythm,
by, sky....). As mentioned before many sentences and almost certainly larger
sections of text will feature the word �the�. Capitals start the �rst letter of
every sentence, sentences are are ended with a full stop or some small selection
of punctuation (typically ! or ?), and repeated characters will tend to be one
of a few selections as opposed to any character with any frequency. That is
just a few things that work for English and most languages have traits that can
be seen like this, indeed a truly random language as far as word creation and
grammar goes would probably not take o�.

Equally in the Megaman ZX example mentioned in the relative search had
pieces of punctuation that were obvious as well as capitals often being obvious
from basic knowledge of the language as well and if you are editing a game in
French and you see things like Fran?ais you can be fairly certain the word is
Français.

133

3.1.6 Pointer and encoding/hex analysis

You have some language tricks, you have some encoding tricks, you have some
computing tricks but you can also combine them and do things with the raw
hex by itself and the pointers it uses.

Pointer analysis is twofold depending upon what you are doing. On the
GBA if you do a search for 08 (the start of the most commonly used address
type) your results might well be large in number and for the most part 8 bytes
or slightly further apart but preferably still a set distance (you do not have to
put pointers end to end and 08080808 is a valid address and aligned for that
matter as well) you have probably found a bunch of pointers. Now it might be
for sound or graphics but a lot of them are usually worth following to see what
goes. Equally (and this would be the second part of the twofold thing) if you
have a list of what are probably pointers and you suspect the operate at the
sentence or paragraph level they are probably not going to be several hundred
bytes apart.

Furigana, markup, links and such. As mentioned elsewhere things like com-
mas, spaces, full stops and more can give away lots of information but that is not
the whole story as Japanese has a concept named Furigana (in practice game
makers and others often use it to hold little hints, notes and other such things),
most languages will allow for text to be changed to emphasize something (mak-
ing it bold, italic and such), you might have a mini encyclopedia that links to
other entries in the text and more. Unlike relative searching if you suspect one
of these follow up on it and it might give away a lot of the encoding and even
part of the text engine itself.

Compression searching Alongside conventional hex analysis various com-
pression searching tools exist (some worked examples of compression can be
seen later but standard compression methods have quite distinct �ngerprints
which can be searched for) and conventional compression tends not to be used
on sound and video so by searching for compressed items and combining it with
other methods you can often quite quickly locate and decode text.

3.1.7 Assembly tracing

Much like tracing a �le involves �nding it in memory and working backwards
this involves �nding the text in memory and watching how it decodes it into
characters or �nding the characters and working backwards from there. Second
to this if you have a proper scripting engine you can observe how it works from
on an assembly level.

3.1.8 Font viewing

A game will often have the encoding in the same order as the font (it certainly
appears that way in the Megaman ZX example). Done properly this can even
allow a relative search to happen when there is no relative encoding in the game
(the relative search tools do support number driven searches or you can go
abstract) or you can use it to form the basis of an alteration attempt to decode
the encoding. Do note that although they might be following each other in the
font the actual hex values that represent them might have large gaps between

134

them for various reasons as even in ASCII the upper and lower case is 20 hex
apart despite not needing to be (it allows for simple conversion which is another
sort of thing to look out for).

3.1.9 Language comparing

If you have a game or versions of it with six or so languages embedded within
you can compare things between them and �gure things out that way. Do note
though that games frequently use di�erent fonts between languages and in the
case of Japanese to Roman languages may even have changed from a 16 bit
encoding to an 8 bit one. Although there are some language level things that
can be done the main idea here is to �gure out �le formats and rough ideas of
encoding ranges rather than anything speci�c but knowing pointers and basic
things about the encodings can reveal quite a bit as demonstrated elsewhere in
this section.

3.1.10 Table creation tools

So after employing techniques that would make early codebreakers proud you
have found out how the game has encoded the text, however you do not have
the patience to sit there and handmake the table, especially not for Japanese if
you have to enter several hundred Kanji you might not recognise/know how to
type. This is OK for although tables are largely just text �les it can be useful
to add large tracts of data at once. Various tools are available for use here but
the de facto standard for those that need it is TaBuLar, although others do like
table manager and tblmaker. Crystaltile2 has some abilities here although the
tables it makes sometimes deviate from the �standard� table format if you are
not careful, it happily uses its own format and usually the di�erences are in
encoding or how many spaces the �le ends with.

Here was the table as seen at the end of the relative searching exercise. Much
like a spreadsheet it is read row column with the numbers being the hexadecimal
they represent.

If you hold over the part you want to edit you get a tooltip with the hex decoding
and the decimal one.

135

So far only slightly nicer a text editor for making these but the real abilities
come in the options

Block ops allow copy and pasting of blocks which is nice when your table has
repeated versions of the same value (sometimes it is used for di�erent fonts and
somethings it seems to be just to be awkward but it happens none the less).
Block lock and unlock (it causes the greyed out things) prevents editing but
more importantly allows insertion of larger sections without having to overwrite
things.
The 16 bit entries option from the edit pulldown menu

Import from �le and add series are quite useful.

Oriton Homepage
Filetrip download
In the spirit of providing alternative programs where possible we have Ori-

ton. Oriton has had a lot of development done on it more recently than most
alternatives. It lacks the ability to add long lengths of known orders beyond
those of a basic codepage (right click on the start cell to add it) but the regular
expression style addition options and 16 bit support (and greater if necessary)
more than make up for it. It also plays reasonably well with the text insertion
program Kruptar 7 which will be covered later.

136

http://www.magicteam.net/index.php?page=programs&show=Oriton
http://filetrip.net/pc-downloads/applications/latest-oriton-f29376.html

137

3.2 Pointers

Granted these are not only a text engine feature (if you have been reading
through you have probably seen several thus far) and are pretty essential for
packing/�le formats but text editing is where people �rst tend to encounter
pointers in earnest so they are here.

Three principle types

1. Standard. Start counting from the start of the �le. Sometimes known as
linear pointers although the term does technically encompass the second
type.

2. O�set. Start counting from some point in the �le (quite often the start of
the proper data/end of the header).

3. Relative. Start counting from where the actual pointer is at (if the pointer
reads 30h and is located at 20h the data in question is likely at 50h).

Games can use mixtures of these and even in the same �le and you can get a
hybrid of relative and o�set although more likely you have a wrapper around
your text if this happens or you are reverse engineering a compression format in
the LZ family. Pointers can also apply to various sections and have things like
o�set pointers with one o�set value dealing with section but the next section
might use a di�erent o�set.

Also worth noting is on larger formats which are not usually seen on the
DS you can use sector or block based addressing where instead of pointing at
the byte address you call a given number of bytes a sector or a block (strictly
speaking a sector is a point on a disc and a block is the proper term but most
people will understand when you speak of sector based addressing) and point
to that instead. This is usually done to make up a limitation in the number of
bits available for your address. For an example 32 bits allows for 4 gigabytes or
so but if you instead say assign 8 bytes per 32 bit address all of a sudden you
can deal with 32 gigabytes at the cost of either having a complex addressing
system (sector 37, bytes 2 through 66) or having to lose out on so many bytes
if you do not use them all in a sector (if you have a modern version of Windows
the properties option on right click will often have �size� and �size on disc� and
this is the reason behind it). Addresses in this case will typically appear as a
multiple of the pointer value but occasionally formats have been seen to use
pointers that are proper calculations based on data held in the pointer table.

A related concept that might be better for the section below is sometimes
lengths can be used instead of addresses so you get to calculate the location by
adding up the lengths (and maybe accounting for a bit of alignment/boundaries)
from the �les before it.

Speaking of alignment and boundaries it will usually be fairly obvious but
not always and this means simply adding up the �le lengths will be that good to
do when recalculating the locations of the new �les (remember unless you can
demonstrate otherwise then match the format of the original ROM) or indeed
just using the length values to calculate things if you are building a tool.

6The graphics imagery used by systems that used palettes uses a similar concept where
each pixel value refers to a table holding lots of other values (which can be changed) or if you
prefer each 4 bit pixel value addresses a 16 bit sector.

138

Pointers themselves can be found everywhere in a �le but usually the start
of the �le, a �le with a similar name (it is easier to open/store a small �le in
memory and refer to that rather than opening a large archive) or the end of
the �le are the locations where pointers can be found. Less commonly pointers
can be seen in between each section or indeed at the start of each section (the
scripting example in the scripting section dealing with The Wizard of Oz -
Beyond the Yellow Brick Road providing a good example of this).

3.2.1 Special cases and non pointer concepts

Pointers are very useful in the long run but there are alternatives. The obvious
method used on more powerful systems and some games is to simply have a
�ag/value that signi�es the end of a section and calculated at run time. Doubly
nice is most of the games that use such techniques will usually use plain text or
�les very close to it as their text (Zombie daisuki seen later has a nice example).

You can also do away with pointers entirely and just use a �xed length of
text and you quite often see this in menus, �xed length entries for in game
dictionaries, bestiaries, item lists and such as well as on older systems. It is
one of the reasons older RPGs originating from Japan like Final Fantasy and
Phantasy Star have odd/short names for their spells compared to later entries in
their franchises or their Japanese counterparts. You can try hacking the game
to support a longer value but this can be tricky (if nothing else you might have
a box bounding the text and will then have to edit that) and you might also
face memory issues so another workaround is related to the early font editing
and dual tile encoding where you might combine a few characters (or fragments
of them) onto a single tile.

Most pointers are kept apart from the rest of the data they concern (either
by being at the start or end of a section of a di�erent �le entirely) but sometimes
games will have each section with a length and there was a truly special case
in Riz-Zoawd/The Wizard of Oz - Beyond the Yellow Brick Road where the
text at points was a sort of scripting language and each section had a type, a
length of the whole section and the actual data/payload, if any, it contained.
Also depending upon how you want to look at it many DS formats can be seen
as a nest of pointers (in the case of the SDAT sound format the whole �le has a
length, the subsection has a length, the sound �le might have a length and then
the actual sound generation section will have a length).

Pointers being part of the header might also house extra data, the DS format
NARC for instance uses the highest bit in a pointer to indicate a subdirectory.

Pointer compression ��re mega�re ultramega�re�
A poor example of a spell name progression perhaps but the last version

contains the previous two spell names. Even on older systems it was uncom-
mon but games have been seen to just encode ultramega�re and point to the
appropriate fragments when necessary.

File format pointers and �ags File formats can see several sorts of pointers
in their main table (which is usually found at the start of the �le and is usually
thought of as part of the header) although the three most common are �le
location and �le length (sometimes all three, two of them or sometimes just
the one) with further ones including number of �les contained within, header

139

length, �ags for compression, both compressed and uncompressed sizes, intended
locations in memory, �les linked to the �le in question (SDAT SBNK and SSEQ).

A nice example can be found in El Tigre- make my mule. A basic example
of the system as shown back in the introduction section but it will be returned
to shortly with an eye towards reverse engineering it properly.

3.2.2 Example reverse engineering of pointers

Returning to the �talk_gd1_en1.bin� from megaman ZX. The start of the �le
is something that is not text by the looks of things

140

Pasting that into a new �le, it fairly obviously needs to be �ipped though

Still not immediately obvious as the text does not start until the late 0110
hex range. Equally the �rst two values are odd until you consider the length
of the �le is 54C6 and if you ignore the �rst two values (o�set pointers) the
rest of the pointers appear to �nish there with some odd values where (steadily
increasing and then something else entirely)

Location (hex) readout (hex) and decode in ASCII from the export
0100 4E16 N.
0102 4E6A Nj
0104 4EDB N.
0106 4F9D O.
0108 5096 P.
010A 5118 Q.
010C 5258 RX
010E 529F R.
0110 52BE R.
0112 532B S+
0114 01F2 ..
0116 02F2 ..
0118 26F3 &.
011A 1AF8 ..
So 0110 hex long pointer section followed by something else and then the

text.
There is still the problem of the �rst pointers being 0000 and 0093 though
Looking at the text again it looks like FE appears at the end of most sections

(FEF2 in most of those but the last one which is FEFF) and there are repeated
sections after those but that is left for markup covered next.

Still it is not meaning much so spreadsheet time. It is best to label your
columns for although you can probably work it out some 3 seconds reading

141

names versus half an hour just to get back on form if you come back to them
at the end of a three month translation period is far nicer.

The column A is the address in the pointer section and B is the value from it
The column C is the location of the FE values and their decimal equivalents
Next (column D) comes the interesting parts where the decimal values have how
much they di�er from the previous value (E)
Next (F) is the decimal of the pointer value column and the di�erence each has
from the previous
Notice a pattern between that the the one three up? The last column was just
a test to make sure the pattern held (it did in this case but there have been
games that o�set pointers each section).
The best part is now you know the trick to ending a line in the game if you

do not want to code something to do it you can use the very same spreadsheet
with a few minor tweaks to recalculate your pointers as you just need to �nd
the new locations of FE and drop those in instead (redoing pointers by hand
is a very tedious and very error prone process so de�nitely automate it if you
can).

Still just to check here, by cutting the �le o� at the end of the �proper�
pointers but still leaving the odd stu�

142

It seems the pointers are 1 after the FE but that is �ne and to be expected
really. The main things left to determine now are what the stu� after FE means,
a good guess would be character names.

143

3.3 Markup, control codes and placeholders

Even if you are not much of a web developer or coder you will probably have a
rough understanding of variables and markup (you have probably posted on a
forum before if nothing else). Text engines are rarely at the level of a modest
scripting language and almost never Turing complete but they can and do have
markup options and placeholders. It was noted in the past but if by looking at
the text in the game you suspect some form of markup or placeholder it is best
not to use it for the basis of a relative search.

Back on topic the markup and placeholders can take many forms ranging
from simple square bracketed plain text, hexadecimal �ags in the text (we see
numbered sections do this often enough and plain hex used to signify a new
line or end of section all the time), XML style markup right through to things
contained in with the pointers (think back to the various �le packing formats
that might have a �ag to indicate compression for an example of a similar idea).

Control codes are a similar concept even though they are usually treated as
part of the encoding and do things like signify a new line, a tab or some such. At
what point in the reverse engineering of a text engine you want to try �guring
them out is up to you though.

3.3.1 Worked example

Continuing with the Megaman ZX game on the DS. The �le has been changed
to talk_m01_en1.bin purely as it appears at the start of the game. It does
however appear that the FE example might not hold entirely true (there are
ones that line up with FE but there now others with FD in some cases being a
potential) but that sort of thing is what makes hacking non trivial.

Looking at the text there is a FC value in the text on occasion. Running
the game it would seem these correspond to line breaks; sometimes pointers do
this, sometimes it is automatic and sometimes it is in the text.

More interesting than that though is the F202 F9E9 03F3 0DF8 03 that the
text starts with.

At the next section
FD F202 F9EA 03F3 0DF8 03
FD is one thing and can be ignored for the time being (that it does not

appear in the �rst value would appear to mean that it is not strictly part of it)
leaving

F202 F9EA 03F3 0DF8 03
The original
F202 F9E9 03F3 0DF8 03
E9 = 11101001
EA = 11101010
Probably not a bit level �ag which is nice. Equally is is probably not a

length value as the �rst section is 38 hex long and the second is 20 hex7.
What is the same about those �rst two sections is they are being spoken by

the same person (Giro). It is however unlikely that there need to be 72 bits just
to represent a character name so there is probably more to it than that.

7Remember just because it can be done one way a game does not have to (calculating
things at run time is less than ideal) and equally redundancy exists so if something is there it
might be ignored in the �nal product.

144

F202 F9EB 03F3 02F8 00 is the next one and that is spoken by someone
di�erent (???? and no picture/�sound only� at this point)

This goes back and forth for a while with the next character (Vent) having
a picture appear on the right hand side of the screen

F203 F9F4 03F3 05F8 01
Next screen has the Giro character at the bottom of the screen. Worryingly

there appears to be two extra bytes.
F201 F202 F9F5 03F3 0DF8 03
Vent at the bottom of the screen
F201 F203 F9F7 03F3 07F8 01
Before dealing with that getting the �rst bunch in a line
F202 F9E9 03F3 0DF8 03
F202 F9EA 03F3 0DF8 03
F202 F9EB 03F3 02F8 00
F202 F9EC 03F3 0DF8 03
F202 F9ED 03F3 02F8 00
The third byte appears to be counting upwards which is quite common in

text systems (it is e�ectively numbered paragraphs). You will probably want
to keep it intact as the game might trigger animations from a counter using it
(if nothing else it is good form to change as little as is necessary) although you
could test if you wanted.

Speaking of testing static analysis might get somewhere and is proving quite
useful thus far but why analyse something statically when you have a machine
capable of running the example and giving you results.

There are three schools of thought at this juncture

1. Copy and paste another string

2. Minor edit to the value

3. Assembly

Assembly is always an option regardless of what you are doing seen as it is
the lowest level that gets manipulated and it can be combined with the other
two methods. It could be a simple value that loads directly (or via a simple
instruction like a multiplication) to the OAM, it could be the input value to
a nightmare function or indeed something in between. However although a
highly respectable method most of ROM hacking and computing general is
about getting away from assembly if you can so the other two are employed.

There are presumably some working values so one school of thought would
be to replace a working one with another working one and seeing what happens.
The other is a minor, hopefully educated, guess and then seeing what happens.
Either could lead to a crash but it takes but a few seconds to check.

For the �rst go around the entire ???? pre text section was used to replace
the one from the opening text section leading to the following (hacked game There were

actually two
copies of
the �le in
the ROM so
both were
replaced for
the sake of
this example

and original game)

145

Only the �rst section was done and it reverted to the original character
right afterwards but perhaps more interestingly the little sliding animation that
it does between characters was done between the hacked ???? and the Giro
character.

Next up was editing a single value, the original replacement was left for this
and it continued to display the picture.

The value chosen was the very last one (the �nal 8 bits before the actual
text, values in hex)

04 appeared to put Prairie
09 appeared to put Model L
10 appeared to put Hivalt
FF caused screen corruption that stuck around for quite a while (the bro-

ken background eventually got replaced after a swap out for a scene but the
text pictures stayed broken and there was additional text corruption for several
screens after).

Were it not in the markup this would probably count as multiple tile encod-
ing and it certainly appears the same way when it happens in regular text (a
single byte/character or a couple being used and the game generating a whole
name).

This does however leave 64 other bits (save for the counting section) doing
something.

F202 F9E9 03F3 0DF8 03 = origin
F202 F9EA 03F3 0DF8 03 = second
F202 F9EB 03F3 02F8 00 = ???? and picture to match
Replacing the 0DF8 with 0AF8 gave

146

Replacing the F8 with F9 cut o� the �rst letter. Replacing with FA jumped
the text ahead for a line before coming back and stuck things on odd lines and
changed the name to �????� where F7 appeared to do nothing at all other than
change the name. Relegated to magic number/constant/�nd out later.

Vent has a box with the name on the right hand side although still at the
top

F203 F9F4 03F3 05F8 01
�F203� as opposed to F202
Sticking 03 in there did indeed put the portrait on the right at the top and

it also mirrored it.

147

Not long into the conversation there is a short with the portrait on the left
but at the bottom of the top screen. Pulling the command from it

F201 F202 F9F5 03F3 0DF8 03 = bottom left
xxxx F202 F9E9 03F3 0DF8 03 = �rst command of the game.
xxxx was added to line things up but could it be a variable length command

system?
Before debating that though 01 was tried and it stuck it on the bottom with

the portrait at the left. 04 and FF appeared to do nothing though.
Some more experimentation could be done but the rest is just �lling in the

blanks and most of the interesting stu� appears to have happened already.

148

3.4 Fonts

If you have not read the graphics section then it might be best to cover some of
the basics there or be able to reference back to it.

When it comes to computers the handling of fonts is a whole game unto itself
and it requires fairly extensive knowledge to implement a font handling system.
Despite some exceptions with newer/more powerful consoles the older consoles
are all bitmap fonts and have no vector graphics to allow for any size characters.
If a game does have multiple font sizes then it is probably another font in the
game, further encodings in the game or some combo of the two. Fonts, more
than any other type of graphics format, like to stray from the power of 2 tile
size even if they are otherwise largely �xed width, sport no fancy extras like
tails or plain. It cuts the other way too and any characters with diphthongs,
diacritic marks and other such devices will tend to be extra characters within a
font as opposed to generated extras. For the most part they are largely single
colours or only feature minor shading and any animations/real time e�ects you
see usually being done at a graphics level with markup to trigger it. That is
not to say fonts are all simple formats as the DS features a quite complex font
format known as NFTR that many games use. NFTR is variable width by
nature but in general if it looks like word art or sometime you would have to
bust out an image editor for (title and introduction screens especially) you are
probably looking at a picture. Although NFTR is popular perhaps just as many
use simple 2d graphics or something truly custom.

Additionally much like music there is a whole raft of �eld speci�c terms and
concepts that come into play and as such font design/construction has long been
a highly specialised �eld/skill. Equally the concepts have largely fallen out of
favour in recent years but 16 bit ��ags� similar to scripting have been seen in
games. Such things were used to allow a given number of 8 bit commands to
follow (if you look at the shiftJIS encoding every Hiragana entry will start with
82 and every katakana will start with 83, this means 8 bits is quite viable if
you script it in), the game to enter 8 bit decoding mode, and some games will
have a command to switch out the table/font switching to use Dakuten and
Handakuten or punctuation or custom characters (this is not to be confused
with games just having multiple fonts and tables to match as that is annoying
but nothing uncommon).

Dual/multi tile encoding Perhaps more commonly known by the initialisms
DTE or MTE the idea is selections of multiple tiles/characters are encoded in
the length of space one character would normally occupy (no technical reason
beyond space saving for using the length of a �single� character space but it
usually is the case). Very strictly speaking DTE, which is a special case of
MTE, refers to when a single value has a result encoded across dual (two) or
multiple (the M in MTE wouldn't you know) tiles, however nowadays many use
it as a catch all term for dealing with values that see something other than a
single character encoded on a single tile (two characters on tile, a character split
horizontally across multiple tiles, an entire phrase split across tiles, an encod-
ing that generates a phrase from a single value but uses the tiles normally....).
Naturally this can really frustrate a relative searching session.

If your characters/glyphs are split vertically across tiles you probably just
have to set the height value with the three main exceptions to this rule being

149

http://www.fontshop.com/glossary/
http://www.fontshop.com/glossary/

1. GBA3 XBpp, which as discussed in graphics is a 4 bpp �compression�
format that interleaves the tiles between the values

2. Graphics level font compression where the half of a character (think d and
b bottom half, j and i top half, R and B top half and so on) is used to
generate things

3. If the tiles themselves are scattered across the �le/section (this is usually
just a matter of lining up one row with the next though). The GBA saw
quite a few instances of this.

3.4.1 NFTR

The NFTR font format was previously mentioned and it is a fairly complete font
format featuring variable width abilities, and in some cases with later versions
you also have line handling abilities. It carries the encoding for the font with
it so if you �nd a NFTR font you have the encoding/mapping right there, do
note it still could be custom or feature custom characters so you might have to
match things up by hand or go with OCR. There was a revision later on in the
DS lifetme to the format so some older tools might fall short here but otherwise
there are a variety of tools that can do things with the format (although many
will not be in English as the format was �rst reverse engineered in Chinese
language hacking circles).

Three tools will be focused on here.

Crystaltile2 Filetrip download
Crystaltile2 features NFTR parsing and decoding support including the abil-

ity to run a basic OCR (optical character recognition) on the font to help with
deciphering the encoding.

It has a limited ability to generate new NFTR fonts from custom encodings
(or a selection of standard ones) using fonts from your computer too. For
the most part it should not matter but the �les it generates are not strictly
compliant and it struggles to make smaller sized fonts although that is usually
more a factor of the fonts on your computer with the general rule of thumb
being the �size� of the font add two is the minimum pixel dimensions.

150

http://filetrip.net/f23649-CrystalTile2-2010-09-06.html

Equally useful is once you can view the font you can type directly and your
chosen font will replace the characters typed (this goes for any point in the tile
viewer/editor)

Editing the font just by typing. Right click also allows a complete insertion of
a font using a table �le.

151

The main NFTR dialog which is available from the tools pulldown menu in
every section of Crystaltile2.
It pulls double duty as the information window (after clicking the triangle to
expand options click the Nftr button to open a font) although most of it is fairly
self explanatory.

The other interesting tool is OCR which is available in the tools menu when
in the graphics editing window. Note it need not only be restricted to NFTR
fonts and will operate on any text you can give it.

It is not a good OCR tool by any stretch of the imagination and any you
have used for ripping subtitles from DVDs is probably a lot better, however it
gets some things right and even does some Japanese which is quite rare. If you
can get rid of any shadows that will probably help and if the font is complex
then by all means try but do not expect much.

Usage is

� Set the font up so it is viewable in single tiles

� Open the tool (tools pulldown menu when in the graphics editing window).

� Select the approximate size (it only has shiftJIS options unfortunately) of
your font and press �Recognise� to have it guess what it is.

� You can also try �Recognise Whole Page� which will attempt to decode
every character in the viewable window.

� In the likely event it is wrong enter the correct character (be very careful as
you may be looking at it guessing a Greek, Japanese or Cyrillic character)
in the space next to the learn button and press the learn button.

Once you are happy with the results press save and it will transfer them to
the left box accordingly, the selections allow for just the list of characters, to
pair them up with their encodings for the currently selected codepage, to start
numbering in order from the box provided (numbers in hexadecimal) or in the
case of index two save it as 16 bit (little endian) starting at the number provided.
Copy and paste this as your table �le.

152

Tinke Github page
Although the self contained tools focused on thus far has more or less been

limited to Crystaltile2 with a few mentions of the others Tinke does feature a
good amount of support for it and is one of the few tools that will try to add
a character to NFTR which is often not such an easy task owing to the more
complex nature of the format.

153

https://github.com/pleonex/tinke

NFTRedit Filetrip download
Although Crystaltile2 has some very nice abilities this is the go to tool for

most needing to do something with the NFTR font format.

154

http://filetrip.net/nds-downloads/utilities/download-nftredit-19-f29196.html

Adding characters to NFTR

Simple editing is able to be done in most programs but adding things, assuming
you do not want to just generate a new font, is a slightly more tricky prospect.

The NFTR format is actually quite complex even before the second known
version appeared in that there are three classes of encoding method.

Tinke is the suggested method for this.
The �add char� button is your �rst port of call. Doing this will add a

character to the end of the bitmap readout but it will not be mapped to anything
at �rst. Add your character now and press apply changes to see it added in.

The �Change Map char� button is next

This is where the real trick is for the NFTR font allows for a variety of
methods of encoding ranging from fairly simple de�ning of a start point to code
by code. It also allows for multiple sections of code (each section being known
as CMAP depending upon the documents you read) which can be de�ned or
restricted as desired. Image number aka Char number on the left and char codes
in decimal here on the right.

155

http://gbatemp.net/topic/105060-nftr-editor/page__view__findpost__p__1455382

Press accept (and then save new font)

Testing it in another editor

3.4.2 Common hacks

Pulling back from NFTR there are a group of fairly common things to do when
hacking game fonts. How easy any one might be varies from game to game.

156

Variable width font hack (VFW) Along with the 16 bit to 8 bit font con-
version mentioned later this is considered one of the hardest things to do as
far as fonts go. Japanese fonts are all �xed width where Roman character set
using languages are very much not when it comes to characters and especially
punctuation. Alas �add 16 pixels to horizontal location� is considerably easier
to program than �read value from table and position item accordingly, repeat
for every character, maybe also handling line breaks� and as it would be unnec-
essary for Japanese games the programmers will tend not to add it to the game,
although it is getting better as time goes on, development gets forced to have
to have to consider the international versions and people start using standard
libraries/text handling engines.

As the previous sentence intimated the object here is to �nd the text drawing
routine and get it to determine a value for the width of the text (a premade table
usually being the best choice of method) before using that value to set locations
accordingly and handle any troubles with line wrapping; it might be set to break
and jump when something equals some set value which is quite possible with a
�xed character size (16 + 16 + 16 will always pass through 160), with variable
though it is far from a certainty. Almost invariably needing to do all this means
assembly level hacking, creation of new functions and subverting old ones, hence
it being dubbed one of the harder hacks to do. The main exception to this would
be NFTR and similar formats that might well have a �xed width character set
coming out of Japan but the format itself (and presumably the libraries used to
decode it) supports VFW which reduces the hack to image editing and adjusting
values.

A nice worked example of the assembly side of things for the GBA exists
thanks to KaioShin which can get on Romhacking.net.

Font handling hack This comes in two forms

1. Line handling

2. Skinny font/font size change

Line handling (for characters like pqfgjy that do not sit within the lines, unlike
Japanese which always does) reads quite similar to the variable width font hack,
though with the added fun of having to deal with the vertical spacing as well.

Skinny font/size change is perhaps the more common font related hack that
is not simply colour change, character/glyph modding or character addition.
Japanese characters tend to be contained within a square box where Roman
characters can be contained, and indeed more often are contained, in a rectangle
with the lengthier side being the vertical. To this end making it so the game
places characters closer together can not only allow you to �t more on the screen
but make it look better if done properly.

This is a bit simpler than a true variable width font for all you have to do
is �nd the value that adds a given amount for each character and change the
payload to something lower (or perhaps something wider if you are improving
a already narrow font).

On top of this you might wish to use a sort of dual tile encoding and split
wide characters like w and m over two characters if you head down this path and
encode one half of each on a tile to itself. Speaking of tiles containing something
other than just a single character

157

http://www.romhacking.net/documents/337/

Pseudo variable width font hack In practice this adds a kind of dual tile
encoding to a font and all sorts of things can be done with it. A basic example
would be to add two lower case l (as in lemur) to a single tile. Returning to
megaman ZX the font_bin.pal �le was decoded (it is a NDS 1BPP 8 by 16 pixel
straight decode) and changed accordingly to change the game from the original
to the one next to it which should hopefully look a bit nicer.

Here the 5B character from earlier was replaced with two l characters and
the occasions where double l happened had the two single l characters replaced
with a single 5B hex value (for the sake of the example the spacing was also
accounted for). In practice most games with a �xed width font will add serifs
and such to the thin characters to try to �esh them out a bit which works for
some smaller fonts but does not scale well.

For an example of the serifs idea the ll was left but the font was replaced
with a font from the Courier family (remember Crystaltile2 allows you to add
characters directly to images just by typing), look at the i (as in India) charac-
ters.

158

Making fonts nicer is certainly a common improvement hack and changing a
font when translating a game is too, however one of the more useful things you
can do with this pseudo variable width font concept is should you encounter
a �xed width/�xed length menu (older Japanese RPGs are especially fond of
this and the problem is magni�ed by Japanese having Kanji which can say a
great deal in a few characters) and are faced with the choice of butchering the
language/name, possibly doing a 16 to 8 bit conversion (although that might
not help screen real estate issues) or hacking the game to support longer sections
(both in code and in the screen real estate department). As menus are made
up of set and commonly used text it is then quite often bene�cial to encode
multiple characters across tiles (no need to �t only whole characters on tiles
unless the game spaces things) thus allowing you a few more characters if you
do it right.

Encoding change Replacing a single character with another has largely al-
ready been covered so it will be left out of this discussion.

You might want to change how the game encodes characters at some point
with the the classic hack being the 16 bit to 8 bit conversion. It does not
tend to happen much today save for where there are memory restrictions but is
de�nitely a skill worth having. You may also wish to change the game so where
it might have decoded 33 hex as the character 3 it will now decode 23 hex as
the character 3.

Back on topic the 16 to 8 bit conversion and the standard encoding tweak
stem from the same concept and that is how are the encodings determined in
the �rst place. Methods are many and varied so some examples

1. A variation on table �les where the encoding and the tile are matched up,
this can be somewhat formal or just pointers in a binary table that do the

159

same job. It will still usually be in order rather than a full blown database
style lookup though.

2. A start point is set in the tiles and the encoding counts from there. There
may be multiple and the same set may be gone over several times, not to
mention it may have some maths done on it (think o�set pointers).

3. A start point is set in an encoding (at this point a list of �random� num-
bers) and tiles are matched to those.

The NFTR format has three main variations similar to those built into it that
developers can choose from.

3.5 Scripting and layout

The concept has been mentioned a few times at this point, however it still not
seen that much in the handhelds and earlier consoles. As some notable examples
exist though it is going to be covered here. The idea here is beyond the basic
text display the rest of the game revolves around a complex engine/interpreter.

The main one of choice here is Riz-Zoawd/The Wizard of Oz - Beyond the
Yellow Brick Road on the DS.

The game actually displays all three main forms of text methods and for
good measure some XML as well (see op.dat).

1. Fixed length sections

2. Conventional pointer techniques

3. Scripting

The �rst two have been covered but the scripting engine is worth seeing and
can be seen in event.dat in the data directory

The initial things are the setup for the maps and scenes but are a nice
example

160

161

Initial analysis of the scripting engine as it was reverse engineered mimicked
the markup reverse engineering techniques, which is to say a combination of
static analysis and testing things to see what happens. Also of possible interest
is the opening few lines which appear to be setting up a debug scene, for as men-
tioned elsewhere the things developers leave in for debugging are often simple
examples of the engine/concept in question and can demonstrate concepts that
might otherwise have to be extrapolated from the complex ones in the game
itself.

Zombie daisuki Of course the scripting seen is not always so complex as the
example above and a nice example can be seen in the game Zombie Daisuki
which has scripting as seen in the following picture. If you want to look then
in the data directory of the game itself there are some �les with the extension
.ini which are shiftJIS compatible. Note the variable names including spelling
mistakes which can see the hacker accidentally correcting them and causing lots
of issues, as well as markup and lack of pointers.

162

Lua The programming language lua was seen a handful of times on the DS.
It was however converted to a bytecode esque arrangement compared to the
plaintext it is usually left as on the PC.

El Tigre- make my mule The game features a nice archive format worth
exploring a bit as it showcases a lot of things seen in archive formats.

Deleting the �rst and setting the window width very wide, the �rst part
which was the names (although do not assume that as names quite often follow

163

the rest of the information covering the �le in question) was chopped o� for this
shot but the long name has been highlighted to get an idea of what goes.

There appear to be a bunch of plain ASCII names (underscore allowed) in
alphabetical order by extension although the extensions are no in alphabetical
order. Looking later in the �le seems to say that upper or lower case for the
names does not matter (on some systems it does). Remember that the fewer
changes made in a thing like this the better so that order probably wants to be
maintained when reassembling the archive

The numbers counting up in the 8 bits following the name section (actually
�ipped 16 bits as you will see in a moment) might well �le numbers (ordinals
might also be an acceptable term) which are useful for the system as referring
to things by name is quite troublesome where maths gives �le numbers.

0100 will want to be returned to later.
Three sets of three numbers, if possible it would be nice to leave them as

they are in the original but that makes simply looking at the more troublesome
than it has to be so a 32 bit byte �ip later

164

The 0100 became 0001 in what is now the upper 16 of the 32 bits.
Three numbers then. The �rst seems larger than the second and the second

plus the third is the next in the sequence in the third number.
Size and location then. For the time being no padding between values is

165

assumed but there is frequently padding to make sure it lines up with 32 bits
or even more but seeing them start on odd values makes it fairly likely that no
padding is here.

Scrolling down a bit further

The swav �les were checked for (they have a fairly unique start of the �le
aka a magic stamp) and they were indeed the swav audio format and as audio
is not usually compressed beyond making it in the �rst place it �nishes o� the
rest.

The 0001 now in the upper 16 bits is indeed a compressed �ag. (a few �les
were extracted and then attempted to have compression applied without any
real success - a quick and easy check).

In the swav examples the �rst and second of the three numbers is the same
(and the pattern for 3 holds).

The �rst of the three values is the uncompressed size, the second the com-
pressed size and the third the location.

pkg archive data table
De�ned as follows
32 bytes for the name presumably ending with the �rst 00 in the name and

padded out from there (the last 4 bytes might be necessary though)
2 bytes for the �le number (�ipped and counting from 0)
2 bytes for a compressed �ag (�ipped, 1= compressed, 0 = uncompressed)
4 bytes for uncompressed size (�ipped)
4 bytes for compressed size (�ipped)
4 bytes for �le location (�ipped, standard pointers (not relative) and starting

from start of main �le (not o�set))
4 bytes padding (00 �lled)
The header format is not �nished as there is still the part that was deleted

at �rst to make everything line up nicely (�ipped to make things easier)

166

pkg is clearly the magic stamp for this format.
301... the last �le number is 300 hex and starting with 0000 for numbers

means that is likely the �le count.
008C 9446 is the length of the �le (usually a common sight in headers) but

is absent
008B F7E2 plus 9C64 (the location of the �rst �le and end of the header) is

008C 9446 and having lengths ignore headers is quite common.
Header format
4 bytes 706B6700 hex (pkg[00])
4 bytes 00 �lled.
4 bytes �le count (�ipped)
4 bytes 0000 0001 when �ipped
4 bytes unknown (019F3323 when �ipped)
4 bytes size of �le - header (�ipped)
4 bytes unknown (0009 4584 when �ipped)
4 bytes unknown (0002 DDAA when �ipped)
4 bytes unknown (0000 0003 when �ipped)
12 bytes 00 �lled (padding?).

The compression The header is a nice example of a custom �le format
and most of the time that is where it ends (give or take building something to
remake the archive) but compression was detected. Sadly it is one of the few
times a custom format for compression has been seen on the DS. The exten-
sions appear as though they can be trusted so for the time being they were.
This section might be more useful once compression (covered in game logic) us
covered.

Other than the swav �les there were a handful of uncompressed �les but
they were usually quite small. That it happened is nice as it points to �le level
compression rather than archive wide library compression (formats like 7zip do
this to achieve very high compression rates for groups of similar �les at the
cost of decompression time, resources, potential for the archive to be corrupted

167

beyond recovery of anything via simple means and not able to be extracted
without a complete archive set in the case of split archives).

tmpCopy.txt was extracted. It sounds like a debug text �le if ever there was
one.

C86 is the length of the compressed �le. According to the header it should
be 2DAC hex long.

entities.xml was extracted. xml should have lots of nice brackets to look at.
16D8 is the length of the compressed �le. According to the header it should

be 00010344 hex long
Neither appeared to have any �ags to start (the �rst clue it might be custom)

and neither had any obvious starting out OK and degradation as it went on (LZ
usually starts out fairly readable and becomes less readable as things repeat
and get picked up and RLE is much the same) which points to something like
Hu�man (the DS BIOS does support hu�man but it was not a standard BIOS
compatible version by the looks of things)

[to �nish]
Assembly reverse engineering (full assembly as seen across the decompression

function).
Memory viewing reverse engineering (�les have to be decompressed to run)
dat �les (some naturally decompressed and compressed, partial known plain-

text analysis).

The lua The header is a nice example of a custom �le format but later in
the �le there are some �les with the extension lua which is the chosen extension
of a fairly powerful scripting language of the same name that has been seen on
the DS (the puzzle quest series and several times in homebrew). These were all
compressed using the custom compression format.

[to �nish]

Puzzle Quest and Theta [to add]

Further reading A scripting engine for the Wii game Tales of Symphonia:
Dawn of the New World was reverse engineered and although GBA and DS
games rarely require anything so extensive it is well worth a read. Links to the
matter at hand at blog.delroth.net part 1 and blog.delroth.net part 2.

3.5.1 Layout and limits

Covered in part earlier (the megaman ZX markup) but worth a quick subsection.
Where most of the time outside games if the text reaches the edge of a screen
it will automatically wrap back around games, and especially earlier games and
games on the handhelds, can certainly never be assumed to do this.

The methods games employ to do things here and what you will run up
against are as varied as any other area of hacking. The �rst thing to note is it
might not be the screen dimensions that causes you trouble but a text box or,
worse, an imaginary/invisible text box which usually means an ASM hack to
change. Equally important and somewhat more troubling are memory limits,
be it in the console's memory (the DS cart is not available in normal memory so
everything has to be copied in), cart memory (seldom a problem on the GBA

168

http://blog.delroth.net/2011/06/reverse-engineering-a-wii-game-script-interpreter-part-1/
http://blog.delroth.net/2011/06/reverse-engineering-a-wii-game-script-interpreter-part-2/

or DS) or format memory (if the game only uses 16 bit pointers you might have
limitations). Strictly speaking this too is an assembly hack but you can get a
lot done by simply viewing the memory and adjusting your habits accordingly.

Auto screen (press to continue) making Not really in the same class
as the others mentioned, save for some quite annoying to handle games, but
de�nitely worth knowing about as it is something you will probably run into
sooner or later. The game might have more text in a given conversation than
can be displayed in the text box given and as such it will either have to auto
change to the next one or allow the user to control what happens. Equally some
games are fairly concise and there might not be provisions for it, or will require
editing of the game's text engine itself.

The possibilities here are extensive. Some will have a basic end of section
command which the game will pause on pending user input and others will
scroll automatically. The eventually ends up at the choices menus in games
(the classic �yes/no� option in a game, a concept that very frequently sees dual
tile encoding used for it) which can a sort of linked list/level design approach
or something buried deep in the game.

OAM/tile driven wrapping This is more reserved for text in images/tile
maps like those often seen in puzzles, however those doing a variable width font
hack might use reads of the OAM or BG tile management to direct things. There
have been games like Kenshuui Tendo Dokuta that used a font representation
and a nitroSDK graphics format to repeat tiles as necessary to display the scene.

Line wrapping Much like pointers being used to indicate the location and
end of a section of text a game might not have the ability to automatically wrap
a line when it comes to the edge of the screen/boundary box. Sometimes it is
automatic, sometimes it is pointer driven, sometimes it has a unique character
or set of values (Megaman ZX used FC if you recall) and sometimes it uses the
same character as another ending value.

Section wrapping Much the same as line wrapping but note that it is not
always the same as the line wrapping used in the game you are dealing with, it
may not even be the same concept (pointers to end a section and characters to
wrap a line is actually a pretty good way for devs to do a lot of this).

3.6 Text extraction and insertion

Knowing what text is, how it is encoded and how any markup happens is all
well and good but for anything beyond a trivial character replacement it gets to
be troublesome to edit things in your hex editor unless you are very fortunate
and have a scripting engine or something similar. Equally your translation
team/programs might not appreciate having to deal with programming style
arrangements and will much prefer to have something that can at least be edited
in a general purpose editor.

169

http://gbatemp.net/topic/320192-japanese-programming-madness/

3.6.1 Text extraction

Even with a somewhat more complete table many ROM images might not have
their text easily extracted to a plain text �le thanks to things like markup and
placeholders; even simple things like the section has no new lines/end of section
marker how most text editors understand it can trouble things. It is for this
reason that custom programs are often made to support a given game/series
rather than dealing with a simple script dump. However a simple script dump
is quite nice to have on occasion and with a bit of thought can be made so as
to allow things to be brought back into the text at a later date with a little bit
of e�ort rather than require a full manual rework.

Technically table �les do support a line, string and section break parameter
(tabular has the ability to add them) but whether your extraction tool supports
them is a di�erent matter. Also recall that not all games use them and might
use pointers or �xed length sections instead.

To this end it can be quite useful to replace such concepts with things you
can edit back in later. Although there are exceptions the vast majority of ROM
images will use a binary format for things like line breaks.

The two main approaches to this are XML style markup and (massive) �ags.
XML is a programming language after a fashion and allows you to de�ne a

simple dataset but here the idea of using < and > around custom strings to
indicate concepts in a fashion like <newline>, <end of paragraph> and later on
proper markup like <bold> holds a bit of appeal and for the most part games
will not tend to use such concepts (although do check). If you have these then
they allow for a simple search and replace to do the job of a more complex tool.
Not to mention you can go really far and actually use proper XML with a parser
you built for it.

Flag and massive �ag is kind of like the XML stu� above but instead the
actual hex representation of things will be used so you can replace more easily.

A nice example might be that in basic editors in windows new line in text
is indicated by 0D0A hex (other operating systems like Apple (0D) and Unix
systems (0A) are di�erent but they will tend to support the windows version
as well), here you might make it so the original end of line is indicated with a
symbol like # or @ (one not likely to be used in the game), has an extra line
added in the actual hex (or not if you prefer that) and then you can replace
easily in a hex editor at the end. Massive �ag just uses a long run of symbols
so you can be sure it is not part of the normal game.

Crystaltile2 scripting window One of the earlier projects of the original
author of Crystaltile2 was a tool known as Crystalscript which aimed to unite ta-
ble support, programming approaches and some more linguistic/language driven
approaches to text extraction. Its functionality more or less made it into crys-
taltile2 and is available in the little discussed text editing window.

This is where the hastily translated (with the aid of some machine transla-
tion) nature of crystaltile2 brings the process down a bit.

The general idea is after creating a table and telling it to use it on the
pulldown menu (if necessary - remember Crystaltile2 supports a wide range of
known encodings) you open the �le in this mode.

After this you can click on the search pulldown menu and press �Ambas-
sador� search which acts much like a strings search from a standard hex editor.

170

After this you can narrow down your selection with one or more of the special
search methods (bungee column means aligned here) and once you have the �les
selected you can press �Extract Retrieved Project� or use the similar commands
on the edit menu.

Conventional text extraction Despite the potential troubles enough games
have done things in similar ways that some programs have been made that can
help facilitate text extraction. The two most popular tools are Cartographer
and Kruptar 7 although romjuice (one of the earlier tools) remains quite popular
as well.

Cartographer Romhacking.net download
A command line only tool which you feed �le and a commands list (which

includes a table) before it spits out a fairly nicely formatted text dump. The
included readme contains full usage and a few examples. Most of it is fairly
straight forward but it does also support pointers of various types (though no
explicit command to support GBA games).

If your GBA game sports some new line/end of section tokens those might
be worth using but if you are using pointers the addition of a 08 or similar at the
start of the value (it does support an endianness swap) might make things tricky.
You can attempt to use the �#POINTER SPACE� command to skip bytes and
you might try using the relative pointers option but a large negative value might
not work well. Failing that a search and replace or better 32 bit bitwise AND
with 00FFFFFF (FFFFFF00 if you account for endianness) across the pointer
�eld will allow you to get things done; workarounds like this are commonplace
if you have to use premade tools and having the ability to do them is usually a
sign of a good hacker.

Kruptar 7 Romhacking.net download
A newer graphical tool (or at least the current rewrite is fairly new) and one

that interfaces with the table making tool Oriton fairly well (they come from the

171

http://www.romhacking.net/utilities/647/
http://www.romhacking.net/utilities/612/

same hacking group/site). It does also have some editing and insertion abilities
as well as table editing.

Pointer abilities as seen on the picture are some of the best around and it
can support plugins written in turbo pascal.

3.6.2 Text insertion

Once you have found, decoded, extracted and altered/translated the text comes
inserting it back into the ROM. Even the basic text edit can take some thought
to get it back into the ROM and if you had to change some things to make it
more amenable for a general text editor or your team it can get worse.

After this you also have to recalculate the pointers but that is a di�erent
matter. You might also have the even more annoying task of recalculating
pointers and editing the ROM binary if your text was eventually found among
the instructions in the game binary or overlays, something several DS projects
that initially seemed quite easy have encountered.

Even more so than the detailing of how to �nd �les/desired data or creating
tables the insertion of text in many tutorial documents amounts to �grumble
grumble, just do it� and moving on. This is not without reason as there are
a great many things that can trip it up and although some ostensibly general
purpose tools do exist they are either impossibly basic and useful for only a
few things (or will do it but extensive manual prodding beforehand), nearly a
programming language unto themselves or very game speci�c. Speaking of game

172

speci�c if you can then it is generally best to get it done that way as there are
so many methods games can use for text.

Still you are going to want to know four things

1. What, if any, markup and placeholders are available, used and what the
extraction stage might have left them as.

2. What, if any, layout, section end and line wrapping commands/markup
are available.

3. What, if any, restrictions you have on line width (note that you might also
have restrictions not immediately obvious if the text is used elsewhere
with things like �ashback sequences, chapter introduction sections and
conversation recounting methods).

4. What, if any, limits on text size you have from the perspective of the �le
format limits or, often more troubling, the memory space limits.

If you have changed the markup from a binary one to one more resembling
HTML, XML or a forum markup (or used the �ag technique) you need to
change it back. You should also take note of your character encodings as games
and computers can do things di�erently. This can be simple things like British
English still uses the di�erent types of quote marks (inverted quotes) which
will have di�erent encodings and American English (also the default setting for
most games) will tend to use the single style of quote (typewriter quotes) or
indeed eschew double quotes in favour single quotes (which appear the same as
apostrophes and a game might use the same character for the di�erent types
of punctuation). Also if you are not careful a given font on a computer will
confuse such things as far as the on computer representation goes but leave
them encoded di�erently, not to mention the related problem of if a game uses
a full stop as a section end (there is often a proper section end command but
not always) and having the quotes outside the punctuation (again di�erences in
types of English grammar appear here).

On the subject of character encodings it is usually best to match the original
encoding with the output; several games have used shiftJIS for parts and regular
ASCII for others (even merging them together within the same string) and will
complain a lot if it is not that way when it it comes to being run, however this
is one thing that is de�nitely worth checking out/experimenting with as it can
save some space.

Other than that it should be fairly easy to determine if you have things of
legal lengths (although in practice you would probably have someone act as a
script editor for this in a big project).

Conventional text insertion Much like text extraction there have been at-
tempts to make general purpose tools. They are quite often limited in ability or
so complex as to be nearly a programming language unto themselves but it is
worth knowing about Atlas. Atlas is something of a standard in general purpose
ROM hacking text insertion and most extraction tools aim to have a measure of
compatibility with it, not to mention most other insertion tools will copy part of
the functionality as well. Equally even if the encoding has not been changed it
is not uncommon for there to be tables for text extraction and modi�ed versions
thereof for text insertion.

173

Atlas (romhacking.net)
It is a script based inserter where the script type is de�ned. The download

includes both source code to allow for modi�cations (although the program itself
does have limited plugin support) and a manual with several worked examples
on usage. In many ways it is aimed at/has provisions for the SNES and similar
consoles with memory mapping but can be made useful for the �le level pointers
as seen in many DS formats.

3.7 Language detection in DS games

The DS features some �rmware on which you can select from six languages8

(Japanese, English, French, Spanish, German and Italian) and games then have
the ability to automatically choose a language. More than once have various
languages been locked out despite being present in the ROM (there have been
a few GBA games to have similar features with one of the most notable being
Magi Nation although that is slightly di�erent) although probably the best
known example is Japanese in Advance Wars Dark Con�ict/Days of Ruin (the
�rst mainline advance wars/famicom wars never to appear in Japan) which was
present in the game but even with Japanese selected it would default away from
it. There were however cheats made that ultimately forced the game to run in
Japanese. More will be detailed in cheats and game logic hacking later but it is
worth noting it exists here.

Other games will allow the end user to select at boot time and maybe later
on as well.

3.8 Translation hacking

The �rst rule of translation hacking is under no circumstances should you touch
a machine translator; they are certainly fascinating pieces of kit and they have
their uses but for the foreseeable future they have no place in a creative work like
translation hacking9 and especially not for nearly entirely unrelated languages
like Japanese and European languages.

10

Translating games is a very popular activity among ROM hackers and if
you go outside ROM hacking and ROM running circles fan translation/ROM
translation will almost be a synonym for ROM hacking. Most translation is

8There is also a China only DS model known as the iQue DS (occasionally iDS) that
features Chinese as well as a Korean model DS that is less well examined. There have only
been a handful of Chinese games aka iQue games that are supposedly locked out but in practice
it is a simple check. Chinese ROM hackers however are some of the most proli�c out there
and have translated well over one hundred titles into Chinese with most being of fairly good
quality including several that did not make it out of Japan.

9Some have said the invention of realistic virtual sex will spell the end of the human race
but others would argue the invention of a machine that can do humour would be more damning
and the �rst step to that would be being able to translate humour and/or wordplay from one
language to another.

10The traditional example is to provide a translation of a piece of a text and back again
so using the paragraph just written from English to Japanese and back again: The �rst rule
of hacking your translation should be touching the machine translation is located under any
circumstances; they are attractive part of kit indeed, although they have their uses, for the
time being, they are hacking translations for language completely unrelated nearly as well as
the language of Japan and Europe, not particularly There is no place for creative work like.

174

http://www.romhacking.net/reviews/62/

from Japanese to English, Japanese to Chinese or Japanese to another language
of European origin (although Arabic, Russian, Korean and Thai translations
are growing in number) and, unlike almost all the other areas of ROM hacking,
this is not simply a matter of technical prowess as it requires language ability
as well. There have been a few ROM hacker translators in the past but they
are rare and usually were more one than the other so it usually means setting
up a translation group to get things done. This certainly does not mean you
as a ROM hacker would not do well to know a bit about the language you are
translating from and this typically means Japanese.

Perhaps above all else you should recognise and appreciate that despite lan-
guages sharing many things in common (verbs, adjectives and nouns for one)
they may also lack things (English does not really have gender for words, some
languages have two and languages like Russian have three) and do things dif-
ferently in things like adjective ordering. On the subject of word ordering most
modern games that use markup/placeholders can work around it, or even change
it without any negative consequences. If the thing to be replaced with a value
is at a �xed point in a script you might have to work around it which can be
troublesome or accept a slightly clunky translation. Some games have encoded
larger pieces of text as part of the variable/markup though and that leads to
things like innkeepers saying �it costs gold 600 to stay here for the evening�.

Equally languages are built upon hundreds of years of history, history which
seriously informs how they work; Japanese culture was and in many ways still is
strongly informed by notions of social hierarchy which in�uences the language
no end and can be quite hard to translate/convey e�ectively if the culture of
the language you are translating into, which is to say most European languages,
does not have such a history. Likewise they have various levels of in�uence
upon and from other languages; Chinese formed a large chunk of the Japanese
written language for instance but nowadays they are far from entirely mutually
intelligible (see kokuji and kokkun) and nowadays you are far more likely to
encounter minor tweaks upon English words in Japanese than you might have
been a hundred years ago.

The study of the di�erences between languages is seemingly quite a common
thing for those in scienti�c and technology �elds to engage in, however despite
it being great to have an appreciation of it is not directly related to translation
hacking so time to get back on topic.

The debate over whether a translation should be kept literal or be able to
be adapted a bit has raged for years no end in sight, indeed several retransla-
tion/cleanup projects have been set up to �x problems with o�cial and uno�cial
translations over the years. Each and every side has valid arguments here with
the only real consensus being changing a work drastically and calling it a trans-
lation is pushing the limit at bit (although if the end result works it can be quite
interesting) and having your translation be readable is a good thing; note that
readable and understandable only with a frame of reference for the franchise or
a given culture/history is not necessarily the same thing, however such a thing
can inform how you proceed with a translation.

Things one should appreciate about the Japanese language when playing
ROM hacker (hacker side of the fence)

175

3.8.1 The types of Japanese characters and how they work -

Hiragana, Katakana and Kanji form the basis of the language

Kana. A collective term for the Hiragana and Katakana they are the basic
constructs of the language with Katakana usually being used for loanwords/foreign
words, also where the Hiragana are fairly freeform the Katakana are somewhat
angular in appearance. Hiragana tends to be reserved for native words and
both are phonetic, which is to say several are combined to make words.rikai.com
shiftJIS has examples of both.

There are some fairly accepted ordering/sorting methods with Gojuon order
being the most popular. Common ROM hacking table making tools like TaB-
uLar should add it and few games deviate here. On the �ip side be aware the
ordering might change, that standard tools might well leave out some of less
common, and possibly obsolete, ones the script writer might use (or the font
that was borrowed had included) or that the game might add entire characters
for characters with punctuation (see Dakuten, Youon/Yoon and Handakuten
although most good table creation tools should be able to add these) so be
aware of this when constructing tables. ShiftJIS and EUC-JP use the order but
will also include Dakuten for the respective characters between them and many
games use or take their cues from the ShiftJIS and EUC-JP encodings.

Kanji Kanji are the elaborate symbols sourced from Chinese Hanzi characters
(if presented with an unknown Asian language script one tends to tell Chinese
and Japanese apart by looking for the simpler Kana which Chinese lacks) and
there are a very large number of them. Indeed there is no upper limit, although
a book known as Dai Kan-Wa Jiten is considered one of the more complete
listings and almost a must for any translator. Even among native speakers they
are considered the harder part of the language and many translators/language
grades will reference various lists of them; most day to day language usually
stops short of the 2000 mark. Unlike Kana they are ideograms and one symbol
tends to represent an idea, although they can still be combined to form related
concepts/compound words.

Importantly for ROM hacking there are various types of works and �elds
(medicine for example) that aim to reduce the number of them in their text.
One of the more notable examples would be that shounen manga and anime
do attempt to reduce the amount seen, a practice quite favourable for ROM
translation as they tend to produce a lot of fairly interesting games that do not
always make it outside Japan.

A few people have tried to make something resembling an ordering for Kanji
and there are a few things you can learn that might help but in practice there
is none and this means relative searching, which is very useful when making
tables for Roman language games, is at best very tricky and more often largely
ine�ective.

If you do w want to try relative searching you will want to have an idea
of the existing ordering such as from a font, via �ddling with the ram, via the
name entry screen or something similar before resorting to a value search or an
abstract search. It should also be noted that as far as encodings seen in the wild
go there have been somewhat logical methods including order of appearance in
the game text (or text from another game if the table is borrowed), character

176

http://www.rikai.com/library/kanjitables/kanji_codes.sjis.shtml
http://www.rikai.com/library/kanjitables/kanji_codes.sjis.shtml
http://www.romhacking.net/utilities/55/
http://www.romhacking.net/utilities/55/

count in the text (most popular �rst for example), ordering borrowed from a
known encoding (even if the encoding values are di�erent) and similar things so
do consider that as well. Also as game development/publishing companies may
not be wanting to bother de�ning a new encoding for every game they make
they may well share them between games, either in whole or in part, or use
existing encodings to create new ones.

As mentioned above there are lists of Kanji you might want to look at to help
make tables, it is far from sure �re though and might be more useful to those
doing the translation; after all modern games are usually written by modern
writers for modern audiences, both of which tend to be products of modern
education and modern language reform. One should be wary though as games
do like to use older symbols as magic symbols and decorations, to say nothing
of wordplay and language appreciation being a fairly common thing in Japanese
culture.

Historically there were things known as moji (categories) which also pre-
sumably led to the slang word �moji bake� for when the encoding used by the
decoder is wrong (not to be confused with cavespeak which is where a 16 bit
encoding is swapped for an 8 bit one which breaks the untranslated text), these
might be useful to know about but this is getting into Japanese orthograph-
ical history and even with a decent knowledge of Japanese will probably not
be that helpful for those tasked with reverse engineering game text �les. On
the other hand you should know what the terms radical and stroke ordering
mean as they are in very common usage. To that end radical refers to the base
stroke/component the Kanji in question started at/as and stroke is quite liter-
ally how many brush/pen strokes are needed to complete the Kanji in question.
It is not a true ordering system but when looking things up these will be what
is used in the vast majority of cases.

ROM hacking tools, or even general use tools, to add vast lists of Kanji in
a manner similar to TaBuLar's abilities in Kana and Roman languages do not
really exist although TaBuLar will support adding lists of 16 bit characters if
you have them premade. Should you have a common ordering (or a couple of
fragments of it they can arrange and add to accordingly) or if pulling it directly
from the game; OCR (optical character recognition) for Japanese does exist and
is even in a couple of ROM hacking tools like crystaltile2, although it works bet-
ter on Gothic fonts and is troubled by some of the more fanciful/handwriting
esque fonts like those in the Kaisho and Gyosho lines and sometimes even Min-
cho, also if you get a tool that can do it Tensho and Reisho, which appear very
di�erent to other Kanji, is not that bad to OCR. In the end you do have some
options but do expect a high amount of manual work until proven otherwise.

As far as basic regular expression type searches are concerned Kanji and the
kana are able to be anywhere in the text and nowhere, naturally if you improve
your Japanese knowledge you will there are situations that commonly call for
one or the other, or a set thing (think u always follows q in English), and you
might get something done.

All that said if you need to change a font as part of the game hack and keep
enough characters/language for your translators to still do some ongoing play
testing then Kanji are usually the better choice for something to lose.

177

Kanji ordering Although it was stated there is no order there are groupings
which you might wish to learn to recognise or at least appreciate. The most
notable versions of this are the

� ?-moji. Although now considered if not obsolete then not best practice by
many, both in Japan and even outside it, the idea of categorising kanji into
groups with the su�x moji it is still known of and in�uences things. Six
groups exist, four of which go by the basic stroke/aesthetic and the latter
two by their meaning. Lists are hard to come by and not that widespread
but so you know if your translator tells you it is grouped roughly like this
you will have at least heard the term before.

� kyoiku. A list of kanji as speci�ed by the Japanese ministry of education
and broken down by school year/age range. Depending upon the person
you are speaking to the complete collection/concept of the grade by grade
breakdown can go by the name gakushu although that is not ideal.

� joyo. This would be the complete list (kyoiku plus the ones from secondary
school age ranges) of common use kanji.

Once again various game speci�c methods have been seen and many custom
methods will share portions or even whole sections with shiftJIS, eucJP or some-
thing similar as it is just as awkward for the original programmers to de�ne a
new order as it is to do it yourself. Equally there are examples of games using
an ordering based upon the order in which characters �rst appear in the script
and orders based upon how common characters are.

Furigana Furigana is supposed to be to help with pronunciation for Kanji
(aimed mainly at younger people and those learning the language) but has been
seen to hold little jokes, extra explanations and much more, basically turning
it into the equivalent of an asterisk or a footnote/reference. It was not that
common on older systems, mainly for technical reasons, but the DS sporting a
nice touch screen and enough resources that you do not always have to heavily
optimise things has seen it used extensively. It usually comes as a type of
markup or �agged text but not always, pointers for example could handle it,
and you can use the space they used to help you �t more into the �le/memory
if you are limited there.

Others (yakumono) Although Japanese has many of the same concepts as
languages using the Roman character set in terms of punctuation, shorthand
and constructions stemming from them the characters they use can be radically
di�erent. sljfaq has more on this. This can allow for some hex analysis type
techniques to return.

3.8.2 Japanese glyphs/characters and observations on the language

There was some mention of the types of fonts seen in Japanese but in general
the characters are �xed width and stay within the lines. This contrasts with the
Roman alphabet which has things like ijlt, and on the �ip side WQMK, as well
as punctuation which almost always sits right next to the previous character

178

http://www.sljfaq.org/afaq/symbol.html

without much of a gap, and on the matter of lines thing characters like j y p q
and f in some fonts/writing styles.

Also note Japanese does not have space characters per se with any you
see being largely aesthetic or for line wrapping purposes; you will probably
encounter this when translating a game from Japanese that has a text engine
built by a Japanese programmer for use with the Japanese language but the
same could be said of most aspects of translation.

Tategaki In short Japanese is usually written horizontally, much like English
and European languages, and it is even read left to right. However it can be
written vertically and read top to bottom with the name for the concept being
tategaki. It is usually only reserved for introduction sequences and artwork as
far as games and most modern Japanese goes so it does not tend to trouble
translation, however it was seen in Sigma Harmonics on the DS.

Equally although it is not strictly legal in English grammar the use of it for
short amounts of text (for instance how often have you see a hotel, cinema and
some such use it in a sign) or simply to cause a mental association with Japan;
it is a fairly recognised visual e�ect and given it will also probably be �oating
over an anime style image or ink wash painting it helps too. To that end you
might wish to leave it.

Romaji One of the main reasons Japanese is considered hard to learn is that
unlike learning most other languages you also have to learn a new character
set. To lessen this and in some cases allow Japanese to be written without a
proper input method editor (IME)/Japanese keyboard (which remember could
be thousands of keys in size if you wanted to include even a small subset of
kanji) ways of overlaying the Japanese language to the Roman alphabet were
devised. There are several with the most popular, although not necessarily most
liked, being Hepburn. Very few Japanese games will use it and occasions where
it might be instead often opting for all English and almost de�nitely Arabic
numbers but it is a fairly important concept and doubly so when dealing with
multiple languages at once.

Sentence length Whether due to the existence of kanji or maybe just in gen-
eral the written version of the Japanese language is quite often shorter than the
English translation which ROM hackers and the o�cial translation teams both
run up against. Speech is a di�erent matter and is usually roughly equivalent
in length which is quite nice for the would be translation team usually as it will
be peppered with honori�cs and such things.

Wordplay All languages and humour using them have many examples of
wordplay but Japanese is especially noted for it and indeed many translators
have missed things like this and delivered a translation very di�erent in tone to
the original over the years because of it. With a few very notable exceptions
(Rudra no Hihou on the SNES usually being �rst in that list) not many games
have used language play as a core concept/mechanic similar to how English gets
treated when magic gets brought up.

It is also yet another reason why machine translation is not to be trusted.

179

3.8.3 On language

Translating a game that already has a translation out there has happened several
times over the course of things and this is usually because the translation does
not �t with various ideas; it could be an awful conversion and full of bad slang, it
could be that the translation team lacked technical skills (even with the source
code some games can be hard to translate11) or it could be that the translation
team were hampered by the developer/publisher and had to change the tone of
the language or word choice to appeal to a broader audience or meet censorship
requirements. Although this is a very interesting �eld in ROM hacking, and
depending upon what you are doing this can even be a solo project, it is not
what this section is about.

Several discussions have been had over the years on the matter of how to
translate certain concepts. It also applies to Japanese with a good example being
found in many Final Fantasy and other Square Enix titles where the folklore
and literature of Europe and the Middle East is often a source for monsters and
themes, not to mention other games use Chinese history and folklore as a theme.
Much like the translations of games from Japanese to English the translations
of items and concepts to Japanese can also see people butcher a meaning of
something.

On a di�erent note Japanese, English and other languages are often quite
di�erent, there are also loanwords that might have had meaning lost at points.
For instance you might know Sushi is not raw �sh but more than a few people
still consider it as such, not to mention where it is a normal enough food in
Japan it is still quite exotic elsewhere and as such you might consider losing
sushi entirely and replacing it with a common foodstu� of your intended location
if the setting is a contemporary city or something.

3.8.4 Right to left languages and translation.

It has been mentioned a few times already but it is worth having a quick section
here as well. Not all languages favour reading from left to right and this can
trouble translation hacking, especially as more and more countries that use
such writing systems start to make games and seek those made before. There is
tategaki mentioned in Japanese but most will be more concerned with Arabic
and Hebrew, as well as the languages that took one of those as a base and ran
with it. Fortunately languages that alternate direction, a concept known as
boustrophedon though strictly that should probably also mirror the line, are
not in common use. Back on topic those that live in locations, want to learn
languages from said locations and otherwise are interested are many in number
and games are fairly universally enjoyed by people. Typically there seem to be
three schools of thought

1. Just leave it left to right

2. Cheat

3. Full hacking

11A Japanese to Dutch translator over at Loekalization details many of the issues faced
by those translating games �for real�. Some things are very much focused on professional
translation but a lot of it also rings true for ROM hacking and even the professional stu�
hints at the issues that are seen when it comes to ROM hacking.

180

http://www.loekalization.com/mistakes.html

Owing to most computer and standards development tending to happen outside
of the locations that use RTL written languages most computing that supports
it has not quite �ltered down into the consoles yet, for a related concept see 8bit
and 16 bit encodings and the historical fun and games there. Even on computers
though things are not great so a lot of people get used to reading things on a
screen di�erently to how they might read a piece of handwritten or printed text.
Indeed RTL and such computer programming is a relatively new concept. To
that end as long as the glyphs are there and in the right order it works, you
probably do something similar when you read 2^4 as 24 on a computer. Not
ideal by any means but perhaps better than nothing.

Cheating then... if you have ever watched someone new to text editing use a
text editor then you might have seen them put text in the middle of the screen
using space or tab and force new pages by pressing return enough times. A
similar technique is used here and for every line of text enough spaces/tabs will
be added that it appears on the right hand side of the screen. Usually here
ROMs with the largest scripts will be chosen as the base ROM, even if they are
not changing that language (those tackling the the N64 Zelda games tending to
use the French ROM but the English script because of this). Again this is far
from ideal but getting better.

Full hacking then. A surprising amount of the text engine, and possibly even
the underlying hardware as far as references for screen position, will be predi-
cated upon text appearing from left to right, however such a thing potentially
not even as bad as hacking in a variable width font. The idea being where a text
engine might do something like �draw character, add 16, draw another charac-
ter, if end of line then start new one...� you instead tell it to start at the end
draw a character, take 16, draw a character and handle new lines accordingly�.
You will have to be wary about negatives and how it might handle going over
(lose a character space and say if it is below the width of the largest character
then new line is fairly safe here) but all in all it should probably be easier than
a full VFW hack, which you may also have to do.

It should also be noted that various characters might be joined in up writ-
ten Arabic, many will take the �it is a computer therefore it does not matter�
approach but if you are being �ash then perhaps consider it.

3.9 Japanese text editors and translation tools

The following section mainly covers various tools for those that need to work
with the Japanese language might �nd useful. Little, if any, usage will be covered
in favour of some links and a quick overview.

Densetsu's translation toolbox maintains a nice set of links to various tools
and resources useful to those doing the translating.

3.9.1 General Japanese capable text editors

Although given an input method editor and an appropriately con�gured operat-
ing system just about anything will do there are certain features that are useful
to have in a text editor when you are editing Japanese. To this end a link to a
couple of them

NJStar NJStar

181

https://github.com/nasser/---
http://gbatemp.net/topic/311523-densetsus-translation-toolbox/
http://www.njstar.com/cms/njstar-japanese-word-processor-download

This is the most commonly used text editor for the Japanese language and
has found favour among the translation teams working on ROM hacking. It is
largely shareware/trial although paid options do exist.

JWPCE JWPCE
An older freeware program that in many ways sits alongside NJStar above.

3.9.2 ROM hacking tools

A hex editor capable of reading tables is quite useful but there are a couple of
other tools that are useful

Get My Hex Filetrip download
Author homepage

Does what it is named for and will return the hexadecimal equivalent of the
input text for several common encoding methods.

3.9.3 CAT tools

Although this is not a language document there are things you can do as a ROM
hacker to help projects along and one of those is Computer assisted translation
(CAT). This is not the same as machine translation but a kind of lookup program
and database for previous translations and helps to ensure consistency in terms
and other such things; for instance if you are translating a massive RPG and
you meet a concept three times in a game but translate it three di�erent ways
it is not going to look good.

Free and Open source tools Although the professional �eld is dominated
by a handful of pricey tools there are some freeware/open source tools

Anaphraseus Project sourceforge page

OmegaT Project sourceforge page
A java based tool and one of the more popular open source programs.

XLIFF Translator Project homepage
XLIFF is about as close as to an inter software conversion standard as it

gets in CAT tool world. The program itself is an MIT licensed hook for a piece
of professional software but functions none the less.

182

http://www.physics.ucla.edu/~grosenth/japanese.html
http://filetrip.net/pc-downloads/applications/download-getmyhex-1500-f29200.html
http://watercrown.info/
http://sourceforge.net/projects/anaphraseus/?source=recommended
http://sourceforge.net/projects/omegat/?source=recommended
http://felix-cat.com/tools/xliff-translator/

Commercial tools On the paid/commercial front there are other options.
Being �industrial�/professional/industry speci�c software though the prices have
a habit of getting rather high and there is a fairly well recognised/supported
format known as XLIFF (an XML based format aimed speci�cally at transla-
tion) many of the open source tools support as well as some of the commercial
ones.

Still

Trados Homepage
Arguably the market leader in the professional CAT tools.

memoQ Homepage
Not as popular as the other two and similarly priced but rapidly gaining a

following.

Wordfast Homepage
Various tools have been released under this branding and depending where

you go the term wordfast can refer to any or all of them. Still a very popular
series of CAT tools and related technologies.

183

http://www.trados.com/en/freelance-translators/default.asp
http://kilgray.com/products/memoq
http://www.wordfast.net/

4 Multimedia

Humans have many senses which go into shaping the experience of the world
around us and storytellers have long recognised the power and perhaps more
importantly the limitations of these senses. Games being a branch of the narra-
tive story device use sound and either because of the limitations of a device or
for the purposes of narrative a game might choose to use a video as well both
of which warrant the attention of hackers. Generally speaking the three main
things to do here are

1. Ripping things - games often contain audio/video tracks people want to
listen to outside of the game

2. Simple in game tweaks - usually quite possible without extensive editing

3. Full replacement - either for the purposes of total conversion, restoration
or simply for customisation

Speaking of ripping things simple �lesystem changes are often very powerful
here.

4.1 Sound

Sound exists as a wave and it was discovered long ago if you sampled the sound
wave at twice the highest frequency you wanted to capture (the concept became
known as the Nyquist�Shannon sampling theorem although there are others
although it is fairly logical when you think of it as wanting to capture the rise
and the fall of the pulse) and depending upon what you read the young and
healthy human ear works up to the low 20KHz hence the 40KHz range and
upwards being used for higher quality sound capture12 although the human
voice is usually far lower than that limit not to mention the all sounds are not
equal (higher frequencies are harder to hear) so you can often get away with
sampling at a lower rate.

There are two types of audio commonly used in games (and most other
places)

� Wave replication

Here you sample the wave at a given frequency (already covered) and given
sample depth (usually 16 bits to allow for 65536 di�erent options for the loudness
of the wave at that point although 8 bit is used on many occasions) and through
a series of various mathematical techniques depending upon the format you are
using you can store and reconstruct the wave to play back later. These can be
hours in length or something less than a second.

� Sound generation/trackers

Here you have a collection of sounds (either simple notes/tones or longer samples
it does not matter so much) of various forms which usually get called instruments
and arrange their playback (and playback speed) at runtime in e�ect creating
music.

Each have their advantages for both audio creators and hackers.

12Some go further for various reasons although that gets into interesting territory and less
useful for the end users than it is for those working with the audio in the �rst place

184

� Waves are quite easy to rip and make sure play back exactly as you want
and are quite capable of recreating sounds well enough to capture voice
and more but they are not so easily controlled in game and are quite large
owing to the amount of data that has to be stored.

� Sound generation is easy to control in that you can add and remove things
easily, change the speed, change how loud it is played back, loop things
according to actions in a game (a very potent technique) and they are
usually quite small as they are only a sequence of commands a few bytes
long at worst however text to audio generation aside they are generally
not capable of replicating a human voice without serious processing ability
being dedicated to them which rarely done.

A few terms are necessary to make the most out of audio

� Sampling - the process of picking points in time to grab snapshots of the
amplitude of a wave with the aim of replaying it at a later date using just
the information from the samples.

� Frequency - the amount of samples you take per second. Measured in
Hertz (Hz).

� Bit depth - the amount of bits you store your sample in.

� Bit rate - in lossy compressed audio the amount of bits you aim to use
over a given time period to store the audio contained within.

� Amplitude - the di�erence between 0/base and the current position.

� Normalising - the process of increasing the amplitude as high as it will go.
Many modern tracks will have individual sections normalised.

� Noise - sounds that get picked up at various points in the system that sit
on top of the audio and reduce the ability to hear it.

� Noise �oor - how quiet you can get before the noise picked up by the
equipment overwhelms the actual signal (usually above complete silence).

� Headroom - certain processes and capture methods result in an unavoid-
able amount of ampli�cation in one form or another. Headroom is the
di�erence between the audio and the clipping limit.

� Decibels (Db) - a logarithmic scale used to measure power of sound and
other things but mainly sound as far as this is concerned. Note there is a
di�erence between Db in audio and Db in some aspects of electronics.

The GBA and DS audio hardware With regards to playback of some of
the common compressed audio formats, the GBA and DS feature somewhat
limited audio hardware compared to consoles like the 360 which have hardware
level support for it. That said they do have various interesting features that
allow for some interesting things to be done on the both sound generation and
wave replication fronts alike. The GBA BIOS also has some fairly extensive
abilities and the standard DS audio format SDAT, which has its own section,
also a�ords a lot of nice things. Additionally the GBA has a format Nintendo

185

provided which is usually known as Sappy and, although it did not quite as
much as use as the likes of the DS SDAT format, it too has serious scope for
changing things and is well worth knowing about.

In practice most audio formats abstract the handling of the audio hardware
to such a level that you are better o� either editing the audio format directly
(most are extensible enough that you can do whatever you need, quite often in-
cluding changing from wave to sound generation) or editing the ROM to change
what audio is played if that is your goal.

Realistically you will probably not spend as much time �ddling with the
audio hardware compared to those times you hack text, levels, stats and graphics
which see you do far better if you have an appreciation for the lower level
concepts there. In the long run this is a good thing.

The GBA The GBA supported stereo in headphones but the actual unit
only had the one speaker. The GBA has six audio channels although their uses
are somewhat restricted.

The four primary channels similar to those seen on the original gameboy and
gameboy color are there mainly for noise, short samples and tone generation so
basically the sound generation support and the latter two (usually referred to
as A and B) can be used for direct reads of wave audio, usually triggered by
direct memory access (DMA) although interrupts can be used as well.

1. Tone with sweep capabilities (sweep is where the frequency is changed in
a continuous manner)

2. Tone (no sweep capabilities)

3. PCM playback for ultra short samples.

4. Noise

belogic.com houses arguably the best public collection of information and worked
examples on the GBA audio hardware (navigation at the top of the page). Nat-
urally GBAtek has a fair bit on the DS sound controller as well.

Typically 1 and 3 are used and indeed that is where most of the BIOS
functions (of which there are many) focus their e�orts.

BIOS The GBA BIOS features several sound controller handling functions
(which are not present in the DS). GBAtek has more but most are for the
hardware to function properly and are what gets called to initialise and maintain
the sound system, save for �SoundBias� which can change the internal sampling
rate.

The DS The DS actually gained a fairly appreciable upgrade in terms
of internal capabilities with support for 16 channels of audio, support for on-
board PCM (8 or 16 bit) and ADPCM audio decoding, and a second speaker in
hardware (the GBA also supported stereo but only for headphones).

Each of the 16 channels/registers can be told what volume to play things at
and whether to pan the audio to a given speaker as well as hold and loop options
for short samples. The channels 8 through 13 can be told to generate various
types of PSG noise (a square wave you can change the duty cycle of) and 14

186

http://belogic.com/gba/
http://problemkaputt.de/gbatek.htm#gbasoundcontroller
http://problemkaputt.de/gbatek.htm#biossoundfunctions

and 15 (numbers start at 0) can be used for white noise. Noise is important for
various e�ects in audio (for one absolute silence is not something most humans
can abide) and can make things sound more complex than they actually are,
not to mention noise is hard to compress and being noise there is no real need
for it to be repeated exactly so generating it is both useful and quite doable by
�dumb� hardware.

Basic music theory One of the many sections that has guides to it longer
than this one but a knowing a few things about how music has traditionally been
formulated can help and much like learning a bit about how various creative
works are often constructed can help you work with others in a team, put into
words why you �nd something not to your liking or indeed why it works and
more importantly give an educated guess as to the limits, design and capabilities
of a given setup. Much like ROM hacking though many of these ideas and
techniques are not hard and fast and those that know what they are doing
can break from them to great e�ect although also much like ROM hacking and
other scienti�c pursuits those attempting to take shortcuts and twist techniques
without a somewhat deep understanding of why they are doing it will often
come up short with little chance of being able to move backwards and make
something good from their e�orts.

For the most part these will be more useful for the times you are dealing
with tracker type formats as other times you will usually just be injecting wave
type sound of some form which if you know the header and encoding format is
probably just a long winded and tedious task at worst.

Although human hearing is relatively continuous it became useful to classify
certain frequencies (and multiples thereof) as notes. Typically there are seven
which in most of the English speaking world and much outside it are given the
letters A through G before they wrap around and start counting upwards again
in the next octave which at this point is double the starting frequency. There
are all sorts of relations and breakdowns after this with two of the most useful
ones being the circles of �fths and the idea of musical scales.

Two or more notes (typically three) that sound like they were played together
can make a chord. In general parlance a chord should be sounds that sound
pleasant to the ear.

Dissonance is where notes/chords played together or the interval at which
notes are played does not sound that pleasant or could be said to sound harsh.
Quite often dissonance can be used but will then need to be resolved before
moving to something else. As mentioned though musical �rules� can be broken
to great e�ect with a special case of dissonance known as tritone aka the Devil's
chord forming the basis for a lot of hard rock and heavy metal.

Tempo refers to the speed at which notes are played and has large impli-
cations for how a piece of music is perceived even going to so far as to be a
hallmark of a genre; in games an increase in speed will often be used in a panic
scenario with the drowning/low air warning in early Sonic platformers or the
increase in tempo when you near the top of a Tetris playing �eld being great
examples. The ability to easily and controllably change tempo on the �y is then
one of the main reasons sound generation has stuck around as opposed to simply
opting for waves all the time.

Most music is based on repetition, anticipation and buildup and indeed most

187

�nd such arrangements pleasant to listen to. A popular example of this being
ignored in part is the drop where something will be played repeatedly, quite
often at a faster pace for each repeat, in an attempt to build up a pattern
before intentionally being halted (technically it is just a change in rhythm or
occasionally the instrument doing bass as they tend to provide rhythm for a song
or are perceived to) and moved into something else; sometime Tetris backing
track and Russian folk song Kalinka is a fairly noted for using a drop.

Not such a concept as much as a technique commonly is used is layering
where various instruments (or indeed noise) are played at all over the top of
each other with the adjustment of volume levels for each and timing thereof
being known as mixing. Although it is more associated with video and dubbing
of audio should there be a noticeable pop as the sound recording is started
or silence be replaced with some noise (often referred to as room noise) and
that makes it into the �nal cut people have a tendency to notice. This is not
so commonly seen on handhelds and older consoles but as games have gained
increasingly larger amounts of voice acting this idea has not been observed as
well as it might.

Today games consoles are reasonably able to play sounds even a trained
ear can not distinguish from one another and thus are often a�orded full com-
positions no di�erent to standalone music but corners can be cut13 and ROM
hackers can be called in to drag it back to form.

4.1.1 SDAT (NDS)

Although several other formats have since been discovered to be quite popular
(for years the list of non SDAT games stood at less than ten) the dominant
format for audio on the DS is known as SDAT.

Format overview The SDAT format is a fully featured if not very extensible
or compressible audio format for the audio engine supplied with the DS SDK.

It features the ability to do tracker/midi style audio in the format known as
SSEQ, short samples in the likes of SWAV and full length audio tracks in the
form of STRM and anything else is a helper format to allow the above formats
to do their job.

Format and formats within

� SDAT - the main format that both stores the �les and stores the relations
to each other.

� SSEQ - the tracker (midi) like format that plays instruments according to
a scripting language.

13There is also the case of games doing it better with a notable case being guitar hero
where Death Magnetic from Metallica was often considered to be mastered better in the
game than the CD version. This is something of an aside though and moves into territory
known as the loudness wars where tracks are ampli�ed to the point of clipping (the point at
which the ampli�cation can not happen any more without a loss of information also known as
normalising) and then often more if only a handful of instruments will be cut out (typically
drums) and then often a bit more to make sure all parts of the track are as loud as they can
be. Bob Katz - Loudness: War & Peace is a nice video on the subject and Metallica Death
Magnetic - How to lose the Loudness War is a link to the Metallica song in question and a
side by side compare of the versions.

188

http://www.youtube.com/watch?&v=u9Fb3rWNWDA
http://www.youtube.com/watch?&v=DRyIACDCc1I
http://www.youtube.com/watch?&v=DRyIACDCc1I

� SSAR - archives of small SSEQ sounds. Usually used for sound e�ects
rather than music.

� SBNK - the instruments library for SSEQ. Articulation Data can also be
given to determine how a sample is read (attack, decay, sustain and release
options available).

� SWAR - the library of the actual wave representations of the instruments.
Every SWAV is stored in an SWAR without exception.

� SWAV - the individual wave representations of the instruments and occa-
sionally sound e�ects.

� STRM - longer wave �les (PCM or ADPCM) that can extend for several
minutes and include full vocal audio tracks. Can be found outside the
SDAT

There are a few other formats sometimes seen alongside them including SMAP
and SADL but they are usually considered leftovers from the build process.
Useful to look at and indeed the �nding of an SMAP �le played a key role
in the early reverse engineering of the format but not usually necessary to do
anything to for hacking purposes. SMAP �les can be generated with tools like
vgmtoolbox and although other parsing tools are available these are often in a
very readable format.

SSEQ basics SSEQ is a scripting language of sorts aimed at tracker style
audio and things people like to do there. It is probably closer to midi than
some of the more advanced tracker formats like XM but unlike midi rather than
an instrument being turned on and then o� the instruments are called with a
duration value inbuilt into the call.

The scripting commands are not always the same length, sometimes contain
a payload and such so decoding them from an arbitrary point can be a bit
trickier than simply reading things. You can however get a full text decoding of
the format though using sseq2mid and the - l option (you might want to pipe
it to a text �le with >�>sometext�le.txt) and VGMtoolbox will also provide the
same output (it has sseq2mid as part of the toolchain).

It will produce something like

SEQ_BGM_C_01.sseq:

00000000: 53 53 45 51 | Signature | SSEQ

00000004: FF FE | | Unknown

00000006: 00 01 | | Unknown

00000008: EC 0F 00 00 | SSEQ file size | 4076

0000000C: 10 00 | | Unknown

0000000E: 01 00 | | Unknown

00000010: 44 41 54 41 | Signature | DATA

00000014: DC 0F 00 00 | DATA chunk size | 4060

00000018: 1C 00 00 00 | Offset Base | 0000001C

0000001C: FE 77 02 | Signify Multi Track | ***-***--*------

0000001F: 93 01 D4 02 00 | Open Track | Track 02 at 000002F0h

189

00000024: 93 02 D7 05 00 | Open Track | Track 03 at 000005F3h

00000029: 93 04 EF 06 00 | Open Track | Track 05 at 0000070Bh

0000002E: 93 05 23 0B 00 | Open Track | Track 06 at 00000B3Fh

00000033: 93 06 A8 0C 00 | Open Track | Track 07 at 00000CC4h

00000038: 93 09 F9 0D 00 | Open Track | Track 10 at 00000E15h

0000003D: C7 00 | Mono/Poly | Poly (0)

0000003F: E1 69 00 | Tempo | 105

00000042: 81 2D | Program Change | 45

00000044: C0 40 | Pan | 0

00000046: C5 0C | Pitch Bend Range | 12

00000048: C6 40 | Priority | 64

0000004A: CA 00 | Modulation Depth | 0

0000004C: CB 10 | Modulation Speed | 16

0000004E: CC 00 | Modulation Type | Pitch

00000050: CD 01 | Modulation Range | 1

00000052: E0 00 00 | Modulation Delay | 0

00000055: C1 7F | Volume | 127

00000057: D5 7F | Expression | 127

00000059: C0 4D | Pan | 13

0000005B: 48 6E 0B | Note with Duration | C 5 [72] vel:110 dur:11

0000005E: 80 0C | Rest | 12

00000060: 47 6E 0B | Note with Duration | B 4 [71] vel:110 dur:11

00000063: 80 0C | Rest | 12

00000065: 48 6E 0B | Note with Duration | C 5 [72] vel:110 dur:11

00000068: 80 0C | Rest | 12

0000006A: 43 57 0B | Note with Duration | G 4 [67] vel:87 dur:11

0000006D: 80 0C | Rest | 12

0000006F: 45 62 0B | Note with Duration | A 4 [69] vel:98 dur:11

00000072: 80 0C | Rest | 12

00000074: 47 6E 0B | Note with Duration | B 4 [71] vel:110 dur:11

00000077: 80 0C | Rest | 12

00000079: 48 6E 0B | Note with Duration | C 5 [72] vel:110 dur:11

Also available is a graphical decoding in VGMtrans but editing is not really
possible in VGMtrans.

Being a fairly straightforward scripting language you can then change what-
ever you like in whatever fashion the engine is capable of with one of the most
common hacks is looping which will be covered later. High level options are
available where you convert things from midi to SSEQ and use looping �ags
a�orded by various programs however it is reasonably easy to do manually and
allows for a greater range of methods.

General commands Most programming languages from assembly up to
the highest level programming languages will have a huge selection of inbuilt
commands but most of the time it will boil down a handful of key commands
or classes thereof used over and over again. SSEQ is no di�erent and the four
main classes of item are

� Tones/instrument

� Jumps, branches and calls

190

� Volume and tempo manipulation.

� Mathematical and �le operations

Tones/instruments do what they say and call an instrument and a length it
wants to be played for. On the stock setup (if such a thing can be considered
to exist) middle C is located at 60 with the range running from 0 to 127 (00
to 7F) but games can and do change the instruments not to mention have the
ability to call slightly longer samples.

Jumps, branches and calls are somewhat limited compared to general pro-
gramming but it allows for the construction of loops and includes loop counters
and other such things.

Volume (including panning) and tempo manipulation do what they say.
Maximum tempo is 240 beats per minute (see timing section in a few lines)

Mathematical and �le operations are typically designed to be used to aug-
ment other areas rather than anything general purpose.

Multitrack is possible if it is declared at the start of the �rst track , up to
16 tracks can be done in one SSEQ.

Timing The timing engine underpinning the SSEQ sound engine stems
from the ARM7 timer and works in an over�ow manner where each pulse (cycle)
the tempo value (units of it known as ticks) is added to a counter and if the
value exceeds 240 the SDAT/SSEQ is processed processed for one instruction
and 240 is taken from the counter before it starts all over again. A quarter note
aka a crotchet is 48 ticks and is �xed as such.

Ripping STRM and SWAR/SWAV �les can be easily converted/extracted
and manipulated seen as they are little more than wave �les but ripping the
SSEQ tracks themselves has a variety of methods that can be used, converting
too them takes some more thought and will hopefully become apparent after
basic SSEQ manipulation is covered. Some of the earliest methods here after
the use of loop back cables from headphones ports and emulators were tools
that just attempted to translate the standard SSEQ sounds to a midi interface
and it kind of worked although was often nothing like the original. Crystaltile2
has the ability to parse SDAT and supposedly play it back but for the most part
it is broken so it is not mentioned as a ripping tool.

On more than a few occasions hidden tracks and tracks that did not make
the �nal game have been recovered from games.

All the tools linked should also be open source as well.

Emulators and loopback The easiest method and often the crudest; has
three main advantages in that you can mute audio tracks in emulators (and if
you get creative with cheats hardware as well), you can edit the ROM to play
the audio in whatever order you wish with �lesystem level hacks and it also
works on the occasions a custom format you do not wish to reverse engineer has
appeared. Desmume has featured audio grabbing capabilities for a long time
now.

191

SSEQ2midi loveemu
The earliest method that attempted to decode the SSEQ format into an-

other format. It attempted to approximate the standard banks/logic to midi
controllers and worked fairly well for the most part but things did not sound
exactly as they did on the originals.

Usage is command line only and here is the output of the usage
usage : sseq2mid (options) [input-�les]
options:
�help show this usage
-0 �noreverb set 0 to reverb send
-1 �1loop convert to 1 loop (no loop)
-2 �2loop convert to 2 loop
-d �loopstyle1 Duke nukem style loop points (Event 0x74/0x75)
-7 �loopstyle2 FF7 PC style loop points (Meta text "loop(start/end)"
-l �log put conversion log
-m �modify-ch modify midi channel to avoid rhythm channel
____ sseq2mid [20070314] by loveemu
There are also STRM and SWAR conversion tools available from the same

author.

NDSSNDEXT Download mirror
Technically called NDS Sound Extractor it usually gets called for the name

of the exe �le (NDSSNDEXT) and it is a self contained tool for ripping DS
audio �les. Much like SSEQ2midi and some aspects of VGMtrans it attempts
to approximate the original sounds but in a di�erent way to standard SSEQ
which frequently had better results than the original SSEQ2midi and it also
converts SWAR archives by default. It is command line only and usage is quite
simple

<�<NDS Sound Extractor v0.3 by TENDON>�>
Usage : ndssndext.exe [options] <�le...>
Options: -x extract �les only(no decoding)
-s show processing status
�help show this usage

VGMtrans (DLS) Download mirror
Arrived around the same time as NDS Sound extractor and eventually got

more stable. Still used today primarily as it has the ability to create DLS �les
although certain programs can have issues (awave studio usually cuts through
it and can put things in rmi format which carries instruments) which some midi
playback methods can use to make the sounds match more closely to the original
hardware; the trained ear can still tell the di�erence between hardware and midi
DLS but it is not the night and day di�erent the other methods often exhibit. It
does also feature graphical parsing of SSEQ and similar �les which is invaluable
when actually editing SSEQ tracks even if you have to actually edit thing in
another editor. Usage is drag and drop onto the �le (SDAT or NDS) and right
click on various sections to get what the allow for. GUI is quite customisable as
well with toolboxes able to be dragged around at will.

192

https://github.com/loveemu/loveemu-lab
http://filetrip.net/nds-downloads/utilities/latest-nds-sound-extractor-f28818.html
http://filetrip.net/nds-downloads/utilities/download-vgmtrans-92909-f27960.html

vgmtoolbox Homepage
You will also need to �nd the relevant decoder kit (Caitsith2's testpack.nds)

that is not included with the standard download.
CRC32
FB16DF0E
MD5
3D902DED2E237D9D0A329E3BC8C0A577
SHA1
7B23ABA82BA2957B3D5FC12B4FA99F02DA6FF766
DLS �les from VGMtrans are very useful so it sticks around to this day but

in many ways VGMtoolbox is the best method available for ripping. Much like
earlier audio formats the playback methods actually use an emulation of the DS
sound hardware (foobar compatible plugins are available in vio2sf) although the
playback side of things has since been abandoned so it is not up to par with the
latest DS emulation.

Also features the ability to generate SMAP �les and other such niceties (also
highlighted green on the picture below).

193

http://sourceforge.net/projects/vgmtoolbox/files/vgmtoolbox/
http://filetrip.net/nds-downloads/utilities/download-vio2sf-2011-05-27-foobar-f29356.html

NCSF This was a replacement made in 2013 to cater to some of the failings
of the ageing 2sf format. Still aimed at the SDAT format it adopts a high level
approach which works better in some instances.

Other tools Various tools have been made to convert to and from various
things and play them back and they will be mentioned quickly

MKDS_Course_modi�er GBAtemp thread. Along the way MKDS course
modi�er picked up several pretty good abilities in the conversion to and
from SDAT audio stakes including the ability to generate DLS �les.

Kazowar's_Player GBAtemp thread. Although more or a playback tool than
anything else Kazowar and a handful of others developed a tool that could
play back the SDAT audio format on DS hardware.

swavtoswar GBAtemp thread.A simple tool that can convert from swav to
swar and from wave to swav.

midi2sseq �ncs mid to SSEQ. Usually the subject of a lot longer tutorial the
idea was if SSEQ could turn to midi then midi could be turned to SSEQ.
Between slightly troubled conversion and di�erent sound banks reproduc-
tion is not always 100 percent accurate but combined with other techniques
and injection methods a lot can be done and it can be used as an interme-
diate format for those that want some higher level editing options. Two
main versions exist and additionally looping hacks are quite commonly
done on top of this although the later version of midi2sseq linked there
does support a lot more in that �eld.

tinke Github page. Mentioned elsewhere in the guide as it has some serious
abilities in a lot of �elds it is de�nitely worth having if you are undertaking
any sound work on the DS (SDAT or otherwise). It is also one of the few
tools able to insert �les into SDAT �les and repoint accordingly.

194

http://gbatemp.net/topic/299444-mkds-course-modifier/
http://gbatemp.net/topic/306997-nds-music-player/
http://gbatemp.net/t243430-swav-to-swar-converter
http://fincs.drunkencoders.com/2011/07/03/mid-to-sseq-converter/
https://github.com/pleonex/tinke

Rebuilding Rebuilding a SDAT �le after a minor edit (that changed a �le
length) is possible and Kiwi.DS' NDS editor has a rebuilding option available
but the reliability is suspect at best so most opt to either repoint the relevant
�le to the end of the SDAT �le and change various lengths in the �le (the SDAT
length, the File Block size and the location in the FAT section).

More recently Tinke has gained a measure of injection ability (with the
ability to repoint) so it is worth having a look here. Usage is quite similar to
the rest of the program but the general order of operations is open the SDAT �le
and view it, press �Change �le�, �nd the replacement �le, repeat as necessary
and �nally press �Save SDAT�.

4.1.2 Others

Although SDAT is very common there are other formats used by several games
and worth knowing about. There have been a few occasions where some of
the SDAT stu� has been found external to an SDAT �le and if there is an
archive/packing format on top of the standard nitro �le system the SDAT com-
ponent will usually be found separate to it but not always (recall the packing
example from El Tigre) but this is not what this section is about. With the
exception of music games most games with that use a custom format will be
a known format or at best a simple wrapper to PCM audio. Midi was seen in
Rhythm N Notes but it might well have been a developer leftover.

http://gbatemp.net/threads/the-various-audio-formats-of-the-ds.305167/

DAT format Seen in Disgaea it appears to be a wrapper format for the
�les usually contained within SDAT. Composed mainly of .dat �les which are
archives starting with the magic stamp �DSARC FL� and followed by the
amount of �les to come (in hex) and then a listing of the �le names and
0000 0100 0000 before starting the �le name, size and location (each sub�le
is padded/aligned to 100 hex). On top of this there is a �le with the extension
.tbl which appears to contain various pieces of information about the �les.

The SSEQ side of things is further wrapped in MSND �les which start with
a DSEQ section and some of the other �les appear to be followed by other
sections.

195

http://filetrip.net/nds-downloads/utilities/download-nds-editor-01-f5658.html
https://github.com/pleonex/tinke

Procyon Audio (DSE audio format) Developer information page (Japanese)
Some notes on the format from project pokemon
Usually better known by the extension it commonly comes in known as

SAD (SD and SADL as well). Seen in several notable games in the DS library
including Luminous Arc and Professor Layton. In practice it is a wrapper
format for some IMA-adpcm. It di�ers from system to system depending upon
their implementation of ADPCM but for the most part it holds. Some versions
(mainly ones similar to Professor Layton) are supported by the VGMstream
library which has had frontends made in several programs and additionally is
used by tinke.

SMD, SED and SWD Occasionally seen in wrapper formats (SIR0 in Zom-
bie daisuki and various versions of PH in Inazuma Eleven) this is actually a
sequenced format as well and one of the few to use a truly custom format to do
it.

PCM audio N+ used raw PCM audio (although it is minimal the wave for-
mat does actually provide some more information). Import and export with
Audacity should be possible.

Conventional wave �les Electroplankton was observed to use standard win-
dows style wave �les and could be edited as such. Brothers in arms also used
standard wave �les but every �le in the game was put into the BAR packaging
format (a fairly basic o�set pointer a�air) �rst. Luminous arc despite using
other formats also had a wave �le for the opening section.

OGG �les Some of the o�cial wrestling games were seen to use the OGG
audio format and it is popular on other systems; WWE SmackDown vs Raw 2010
was the original source and looking at some of the other information it is likely
to hold for other entries in the series as well. OGG is a fairly complex format
that arose in an attempt to provide an audio (and later video) compression
format free from patents and the associated issues (for commercial use you may
have to pay codec creators for using their format). VGMtrans can search for
and extract OGG �les from container formats.

ADH/AHX/ADX Cri middleware made a series of audio and video formats
that �rst rose to prominence back on the Dreamcast although it was spotted on
the DS and really came to the fore when it was seen to be used in The World
Ends With You (TWEWY) which allowed remixes to be made with some simple
tools.

DCDEV has ADX2WAV and WAV2ADX tools which do much of what is
wanted but newer versions of Tinke also support it as does VGMToolbox (Misc.
Tools -> Extractions tools -> Streams) and as popular game music format
libraries have existed for a long time with support for it there are plugins and
support for it in lots of places.

Cri middleware maintains a list of games that use their technology (note that
not all are the audio as they do video and �le management formats as well). If
you want some more on how the format is implemented and some of the abilities

196

http://www.procyon-studio.co.jp/dse/
http://projectpokemon.org/wiki/Digital_Sound_Elements
http://www.geocities.co.jp/Playtown/2004/dcdev/dcdev.html
http://www.cri-mw.com/product/adoption/platform/ds.html

of it there is multimedia.cx CRI ADX format discussion and multimedia.cx CRI
ADX ADPCM discussion.

It should be noted they Cri middleware have made a new ADX format seen
on a few PSP games known as ADX2.

Proper custom stu� This is usually reserved for music games that need
extra formats as part of their method of operation although this gets closer to
level formats. Taiko no Tatsujin used SDAT and a custom format known as
DSB, Daigasso Band brothers which uses a format known as BDX and another
called gak and has a selection of tools at Yasu soft and information at Auby.no.

4.1.3 Tracker formats

More popular in the late 1980's and early 1990's than right now they are none
the less very closely tied to games and game/hacking culture (some people
erroneously call the sort of sounds they produce keygen music with a better
term being chiptunes). There are many formats but the big ones are XM, MOD
(not to be confused with the DS video format or the camera video format), IT
and midi although midi is not quite the same thing. As you have seen already
Nintendo made their own tracker format called SSEQ which is used extensive
although if you open up GBA and DS games and �nd something else you are
more likely to �nd XM or MOD than any others (not that they can be dismissed
lightly as s3m also featured on the GBA).

They are usually editable directly and options vary as widely as music cre-
ation does but Open MPT should get you started.

4.1.4 General rule of thumb for custom audio formats

Mentioned in passing already but worth noting properly is that although there
are a handful of exceptions (mostly music games) most of the time if you see an
audio format that is not SDAT it is likely one of three things

1. A known complex audio format (ADX/AHX, MP3, OGG, one of the
tracker formats and such)

2. A wave/PCM �le or a wrapper for it

3. A known custom format that rose up with the DS (mainly music games).

If it is not a plain audio format (remember to match things if you change it
unless you can demonstrate it works with better or worse) then chances are it
will have been seen in games before. Equally if it is not one of those it will
probably match the hardware quite closely.

Also and far less of a hard and fast rule it is usually SDAT format or some-
thing else entirely but some do still mix SDAT and their other formats.

4.1.5 Common DS SDAT audio hacks (undubbing, injection, tweaks
and relinking)

Although much has been covered there is more and the need for some example
hacks. SDAT hacking can be very simple or it can require a lot of thought and
e�ort to do although that is usually just a matter of thinking things through as
the format is fairly logical.

197

http://wiki.multimedia.cx/index.php?title=CRI_ADX_file
http://wiki.multimedia.cx/index.php?title=CRI_ADX_ADPCM
http://wiki.multimedia.cx/index.php?title=CRI_ADX_ADPCM
http://home.usay.jp/pc/etc/nds/
http://www.auby.no/wiki/index.php?title=Band_Brothers_DX
http://openmpt.org/

Basic undub

The basic undub is a very simple hack; you �nd the sdat or equivalent �les in
the source game (usually the Japanese version) and replace the European or
North American's SDAT �le (renaming if necessary) and rebuild the ROM if
you unpacked it to do it. If the sound format got changed en route (unlikely
but covered later) then at best relinking will need to be done and at worst a
proper header rebuild or injection (or the script is converted to the game that
houses the would be sound source).

Relinking

Occasionally ROMs come with nice tracks for part of the game and ones someone
may not like to hear at other times. An early example of this with a ROM
that was hacked to alter things here is Tetris DS which had a version of the
Korobeiniki (even if it was internally called Karinka (Kalinka) which is another
somewhat similar sounding Russian folk song sometimes seen in Tetris games)
which only played at later stages in the game and it otherwise played a selection
of tracks from the original NES Mario brothers title. Knowing how to do this
also forms the basis for several other types of SDAT audio format hack.

Although you could go into the game and change the relevant calls to tracks
in the game there are two main ideas on how to set about changing this

� The crude way that usually works

� The slightly more complex but proper way

The crude method relies on the idea that most tracks will not deviate from the
standard bank for the game so all you need to do is �nd the location and size
markers for the �le you want to change and the one you want change them to
and replace as appropriate. Once you have the relevant data this quite often
can be done with 20 seconds of copy and paste.

There are all sorts of methods but step zero is �nding out what tracks you
want to edit and be replaced by which is usually this is done by ripping the
relevant audio although much like regular �le �nding names can quite often
help you.

You could generate an SMAP �le if you wanted but an output from some-
thing like Crystaltile2 is often just as helpful

198

The crude method sees that the relative addresses and size values contain
the relevant information

Now either because you read the value from SMAP, read it from the �le
itself (at location 20 hex for 4 bytes there is a pointer to the FAT section) or
simply searched for FAT in ASCII (every SDAT �le will have it).

199

Going to a hex editor

007C
20A1
80BF
.....
All just the �ipped numbers.
If you look back at the SDAT �le readout from Crystaltile2 you will see that

is the relative address. 9496 in hex is 2518 so you have the size as well.
The crude method which often works well simply copies and pastes the

location and size values over the �les to be changed.

200

The more complex method takes the idea of multiple banks into account and
will change those as well else the game might try to play with a di�erent bank
which could well make for a very interesting �cover� so to speak but maybe not
what you are searching for here.

On the crystaltile2 readout the �nal column has some data which corre-
sponds to the relevant information for the �le in approximately the same manner
as an SMAP �le.

The actual meanings to use the same terminology as kiwi.DS' SDAT spec-
i�cations are in order ��le number� �bank� �volume� �channel pressure� �poly-
phonic pressure� �polyphonic�. FileID which is not necessarily the same as �le
number (�leID and �le number can di�er between sections as you can see in
an SMAP �le). What is a �ag and what is just information is debatable but
much like the sizes and locations in the crude relinking method it does not really
matter as long as it is the correct version.

In the example SEQ_SEN_P.SSEQ was the �le in question. It has the
information about it in the INFO section which again you can either search for
or read o� from 18 hex.

Now INFO is not quite as nice as FAT but it is still well within the realms
of some light copy and paste and much like everything else INFO has a header
section and a pointer section before that actual data section.

The pointer section it at 40h (technically there is a pointer but it should
always be at 40h as there is nothing variable before it), the �rst entry is the
number of �les and you could multiply through and calculate it (if you were
making a program you probably would) but the value after is the pointer to the

201

�rst entry so use that instead.
You will end up with something like the following picture (note for the sake

of readability the address was shifted to the start of the INFO block)

Pulling some information from it
0000 0000 3300 6440 4000 0000
0100 0000 0800 6440 4000 0000
Looking back at crystaltile2 and accounting for hex to decimal conversions

it all appears to hold
Now you do not want to replace the �leID as the SSEQ engine might use it

to address the �le but the rest needs sorting.

202

In this case it does not matter but SWAR archives contain the actually wave
form representations of instructions and sound e�ects, they are however some-
what apart from the rest of the SDAT and will need to be handled separately.
Fortunately other than relative pointers they are quite simple archives and all
data on �les is contained within the �les themselves so no need to edit things
beyond the pointers.

Injection

With undubbing, whole SDAT replacement, a bit of slicing �les up (unlike
whole replacement it allowed at least some of the original audio to remain) and
relinking indicating that SDAT was a fairly resilient format the next step was
to try injection of other �les into the game. Much of it fairly obvious if you have
a basic appreciation for the SDAT format but an example none the less.

Phoenix Wright 2 replaced with a Phoenix Wright 1 track is the order of
the day here. The audio from the �rst game is often considered to be top notch
and the second game left much of the classic audio out to the dislike of many
so here injection will be used to change the a track from the second game into
one as heard on the �rst game.

Rather nicely VGMtrans allows in place playback so
BGM070 in second game is used as the objection track (Phoenix Wright

Justice for all track 7/objection if you go searching)
BGM002 from original game used (a track otherwise known as �Phoenix

Wright ~ Objection! 2001�)
There are of course several ways to approach this but as one �le is being

replaced with another the obvious thing to do is replace one �le with the other.

203

Basic �le replacement with tinke was already covered but here is what the
Phoenix Wright Justice for All SDAT will look like

Name and location of the track that wishes to be gone and the track being
used to replace it. With things known it is but a few basic clicks.... it will
probably play but will not sound anything like the original. This is as the SSEQ
format is not standalone and in this case has three helper �les (see bottom left
box).

No problem just replace the other �les in the same manner; the trouble
comes in that the SWAR �wave_agb_bgm� is common to a few �les in both
games and it providing a fair few samples (the ones that match the names in
this case merely seem to be house a few longer samples). Replace and damn the
consequences works well enough and does indeed net the promised change and
as it would seem the games are quite similar at least the opening track which
is a rendition of Bach's �Toccata and Fugue� and has only a couple of small
samples works well enough with the replaced �le.

The proper way to resolve the issue as straight replacement only works to
a point is somewhat closer to the older methods involving a manual rebuild
(or indeed trying to dodge having to rebuild). Here rather than repoint an
entire �le the relevant �les would be added to the end of the SDAT and the
�les repointed to that in a similar manner to the standard repoint but alongside
that the section lengths would also have to be expanded and on top of this the
grouping data will need to be changed to re�ect the new bank. The following
is purely for the WAVE_AGB_BGM in this case as the other sample library is
unique to the replaced SSEQ �le; not all games will need this as some have a
bank and a sample library for each song and equally some games will just have
a single bank/sample library used for every sequence. Adding an entirely new

204

�le is quite tedious and long winded so another song will be sacri�ced and the
sample library it uses being used to house the required �le instead; the bonus
here is there are a few voice samples for non English languages that could be
looked at.

Getting back to the matter at hand the track SE0B8 is the sacri�ce today
and replacement is simple enough but now comes the trick of reassigning the
sample libraries. As with most things in ROM hacking there are a few options
but the easiest way that will not damage the rest of the �le beyond the otherwise
unused sacri�ce is the chosen one. The bank �le itself controls what notes look
to what SWAR but it references the INFO section of the SDAT header so that
is probably the better thing to edit.

After the SSEQ info section seen earlier and one for SEQARC there comes the
list of �les associated with banks

205

Sample from the SMAP �le (alas �leID is in decimal here but 181 dec =B5 hex)

Sample of the wavearc listing

Format is internal �le number for bank (16 bits, �ipped), 0000 (unknown)
and then the bank numbers and FFFF if there is no need to link it (very few
games have more than two associated wavearc �les but it can go to four). As
noted before many BGM tracks are linked to �le 0 (WAVE_AGB_BGM) and
they often have their own wavearc as well for a couple of samples but stripping
the other data from the smap to leave what is necessary for this hack

219 decimal = DB hex
163 decimal = A3 hex

206

Replacing the second 0000 with A300 (�ipped as usual)

Music creation and injection Injection from another source just means
making a SSEQ or some other �le, tools like midi2SSEQ which admittedly
have some of the same pitfalls as the original SSEQ2midi tools do exist though
(di�erent instruments leading to a di�erent sound), on the GBA some people
created an instrument library from the standard midi controller and allowed
that where some on the DS use the DLS format VGMtrans (and MK DS course
editor) can create to guide Anvil studio to do things (DLS �les from VGMtrans
and open MPT have some issues). On top of this looping is common thing for
tracker/sequenced audio and even some wave �les to do and will have to be
taken care of. There are various ways to get looping done and some of the later
versions of midi2sseq did support looping �ags after a fashion.

Replacing tracked/sequenced audio with wave based audio has not really
been attempted, it might work as the SDAT seems to call based on �le listings
more than anything else but the information it also carries might trip it up.

Proper/complex undub

Note that quite often if an undub fails it is more likely to be the fault of the
tool/process rebuilding the ROM after it is unpacked but occasionally ROM

207

images do change layout between regions and not usually for the better. For
those few you might have to relink the �le in such a manner that it plays back
in an acceptable manner on the localised game but there are other occasions
like Spectral Force Genesis that had voice acting (in AHX format no less) in
the Japanese game but lost it in the move out of Japan; here it would either
be ASM to add it back in or more likely try to translate the game by getting
the o�cial translation and putting it in the Japanese game (Suikoden Tierkreis
had a hack that did just that as part of an undub). Megaman ZX is an early
example of a game that got somewhat gutted when being localised so it might
prove to be interesting to look at as well.

Castlevania portrait of ruin The game actually features the hidden option
to change voices to Japanese (hold L and press A to make a selection at the
menu with an audio cue for doing it successfully14) but for the sake of this
example it will be assumed that the setup there is sub optimal as maybe only a
minor remix is wanted/only a select few things want to be undubbed. As they
are quite long voices (sometimes several seconds in length) SSEQ and such is
probably not the order of the day and indeed the STRM �les were chosen. A
quick sample from Crystaltile2

14Despite the L and A button combo/option the US game was eventually returned to some
time after this section was written. At that point it was observed that 020e0200 in memory
in the US version of the ROM held a value/�ag. By holding it at 00 hex (the basic Action
Replay format cheat being �220e0200 00000000�) it always played Japanese, 01 hex was the
value it used for English and everything else was still English. More interestingly though if it
changed during runtime the voices would change as well.

208

A nice developer left extra in 3710 (it is the voice presumably from the E3
video that said available Fall). Either way as STRM �les they are e�ectively
full wave �les there and can be tweaked as per a conventional relinking hack,
or injection if you really want. To make life more interesting though not all
the voiced audio is there and buried within the nearly 1600 sound e�ects are a
few voiced sections (broken up rather nicely into BGM and sound e�ects here).
These mainly line up with the 380 hex to 560 hex range (ndssndext conversion)
from �WAVE_SE_ALL.SWAR� (3665 in the main SDAT �le) which will also
want to be remapped accordingly, the SWAR �le type is fairly basic and all
data is contained within the �les it houses rather than any header so the bigger
problem is �guring out what is what (sadly names are lacking in SWAR).

SSEQ editing

Editing commands is occasionally useful so here a few notes will be changed in
one �le, the header will be messed with to e�ect a speed change and then a loop
added in another with image representations of the resulting waveforms for each
being shown.

Tetris DS zelda victory sounds Tetris DS featured a bunch of minigames
based on tetris and featuring some of Nintendo characters as the artwork in

209

the background and providing some backing audio. One of these minigames
featured Zelda characters in a quick�re mission mode with the classic Zelda
victory sound when you succeeded however there were a few notes that came
out as drum hits after it as a lead back in for the game that play when ripped.

VGMtrans shot (ignore the later highlighting as it breaks down later on
although actual worked breakdown on the right is OK).

There are a couple of schools of thought here with the two main ones being
�what are those other tracks for?� and �just edit the notes�. If it was just for
ripping they are in fact mixed for at least one hit so a simple chop in a more
conventional editor would not do, removing tracks would probably help (indeed
converting it to midi and removing some of the later channels does exactly this)
but this is more for an example of a technique than the end results at this point.

There are a few things to note here although the main thing is the classic
Zelda success sound is well known and is four notes long which means everything
after the �rst four notes might want to be axed.

The C700 command means it is polyphonic (notes can happen at the same
time, C701 means monophonic) and as chords can be built from several notes
playing at the same time simply blanking everything after four notes might not
work. Still it was done and everything after �four� notes had their length values
replaced with 00 or changed to waits with length 0.

On the picture above that means everything after 204B80 was replaced ac-
cordingly to give

210

Good news is that it did indeed remove the drum hits from the end of the
sample but it changes things for the worse and part of the strings was what was
ended up with (edited version on the bottom)

211

Editing once more but with the knowledge that the drum hits are 5 beats
and the zelda sound is four beats; it led to track 5 being edited which turned out
perfect. The classic test of such things is to invert the second signal and play it
back which highlights any di�erences or in the case of two otherwise identical
tracks cancels out the main track and leaves only the di�erences and doing so
left just the drum hits.

212

Tetris DS Korobeiniki speed change A good starting place for audio hack-
ing is the crystaltile2 SDAT information.

As mentioned for reasons unknown Korobeiniki (ancient tetris in the game
itself) is called Karinka (Kalinka) in this but that is what needs to be edited.

Even in the SDAT viewer double clicking a �le in Crystaltile2 sets the hex
editor window to the location in question but if not there are several other tools
that can help and if you decide to change the �le length (remember there are
jumps/branches that might be broken) other tools have already been covered
to help here. Some however consider it a bit too fast (and it is slightly faster
than many classic renditions in tetris) so changing the tempo is in order. E1BE
it is. E1 hex is the command for tempo and BE (190 decimal) is the payload so
it was changed to something a bit slower at 78 (120 decimal) which might be a

213

bit slow but does make for a very clear result. Here none of the others had a
tempo command but repetition is easy enough.

The resulting wave �les (modi�ed slower version clearly on the bottom)

Although it is quite possible to do this with a wave �le to do it in real time
on the DS hardware would push it to the limit where just modifying a sequenced
piece of audio is not only easy it is catered for.

Tetris DS Korobeiniki looping At one point looping was mostly done for
those injecting custom �les that were �rst converted to midi or never started
life as a SSEQ, however the newest versions of midi2SSEQ support multiple
looping �ags and will add things into the resulting SSEQ accordingly. This
means today it is largely done for improvement style hacks or those porting

214

SSEQ �les between games. Methods here typically involved adding in dummy
commands that could be replaced with a loop �ag.

Although the song itself is a classic for this example hack the �rst few bars
are all that is desired.

There are several loop commands available to the would be SSEQ composer
Length of parameter needs one byte added to get length of the whole com-

mand.
Command Param length Description of parameters Explanation

94 3 o�set jump address O�set = start of pointers (typically 1C)
95 3 Location within Calls another track into position
FD 0 - Returns to call address plus 4 hex
D4 1 Loop count Starts a loop counter
FC 0 - End marker for D4 command

Various commands are used for various things depending upon the composer
although the 94 command is the one typically used by hackers

4B= start of the track proper (67-1C) for track 1 as the set mono/poly
command is not necessary. As this is just the start of the track for this hack the
last commands in most tracks are jumps back to their respective track starts
and can be copied from there (note VGMtrans has a habit of adding the end of
track markers into the �le) and where di�erent command lengths were entered
rather than try to recon�gure them FC was used as a type of NOP as it would
do nothing unless there was a loop running.

This was done for several tracks as there are multiple tracks that can work
at once; this can be quite tricky if you are facing multiple tracks but persevere
and things start to make sense. It is not immediately obvious in the wave form
but some interesting things did happen and at points it sounds like a badly
conducted piece as others attempt to start a section.

215

4.1.6 GBA audio

Nintendo did provide a format for the GBA developers to use, indeed many
did (in ROM hacking circles it is usually known as Sappy) and there was some
support for other tracker formats from a selection of companies (Krawall and
Apex Audio System being two notable examples of alternatives). Because of
alternatives and a few other reasons it did not however come as close to domi-
nating the GBA platform when compared to the SDAT format has for the DS.
That said it is de�nitely worth having a look if you are trying to rip sounds
from a GBA game. Sappy is a sequenced/tracker style format and that is the
main method of audio for most GBA games but with a bit of thought wave type

216

http://knzl.de/krawall/

audio arrangements can appear (indeed Golden Sun eventually got voice acting
added in as a hack).

Much of GBA audio hacking information for those games with sappy formats
is ROM speci�c but that list does include most of the popular titles for hacking
(pokemon, �re emblem and golden sun being especially well represented) and
many tools will attempt to scan a game for the.

Sappy

Filetrip download (both main forks)
The name of the basic GBA audio ripping tool. There are three main lines

for it with 1.6 being the standard one and Sappy 2005/2006 being a later ver-
sion/fork that is not used as much as it might be but there is a further fork in
the Sappy mod line.

The 200? line does technically have the ability to insert audio but many
will prefer manual editing and insertion instead. It has some mapping abilities
so games with custom audio mappings sound better when they are played (the
1.6 line outputs to midi format). Although the DS SSEQ audio format takes
a healthy dose of inspiration from the format it is not similar enough to draw
too many broad comparisons beyond them both having commands and concepts
common to sequenced/tracked audio.

1.6, 2006 and 2006 mod screenshots

217

http://filetrip.net/gba-downloads/tools-utilities/download-sappy-2006-f9566.html

Quick overview of format Romhacking.net's copy of Bregalad's sappy audio
notes

Bregalad (who did the Final Fantasy audio restoration hacks among other
things) wrote up a nice overview of the format.

midi2GBA Occasionally known as mid2AGB or midi2AGB it started out as
part of the o�cial GBA SDK and so is not linked here. Probably the main tools
other than sappy that get used for GBA audio hacking as it is very capable of
turning midi �les into sappy audio. It should be noted the toolkit does not seem
to deal with metadata well and several midi tracks have been observed to use
dummy tracks as a type of metadata.

wave2gba Darkfader GBA section
Darkfader made a tool ostensibly for homebrew but as part of the �close to

hardware� idea it became able to be used to make custom samples. Supposedly
the Sappy mod line renders this less useful.

Zahlman's song editor Filetrip download
A python script also capable of doing a lot with Sappy audio. Although it

has a lot of automated functions most of it will have to be manually guided so
most consider it a nice tool to �ank tools like sappy with.

loveemu tools Google code download
Github has some other things.
loveemu made a couple of tools for the GBA known as gba2wav and gba2midi

that attempt to scan the ROM for Sappy audio and decode it.

Caitsith2 saptapper Project homepage
Aimed more at audio ripping than audio hacking itself it does still generate

some interesting information.

218

http://www.romhacking.net/documents/462/
http://www.romhacking.net/documents/462/
http://www.darkfader.net/gba/
http://filetrip.net/gba-downloads/tools-utilities/latest-zahlman039s-song-editor-f29864.html
https://code.google.com/p/loveemu/downloads/list?can=1&q=&colspec=Filename+Summary+Uploaded+ReleaseDate+Size+DownloadCount
https://github.com/loveemu
http://gsf.caitsith2.net/ripping.html

GBA audio ripper Filetrip download
Atrius made a simple tool somewhat in line with saptapper above that aims

to rip audio for 1:1 playback (in this case in the author's GBAjukebox program.

VGMtrans VGMtrans supposedly features a measure of support for the Sappy
audio format.

Others There are various other tools that can be used like LoopMaker from
blackonix as well as assorted plugins/wrappers for sappy and midi2agb usually
aimed at speci�c games.

Basic Sappy audio injection hack XXXXXXXXXXXXXXXX
There are three methods commonly seen

1. tr.exe strip and inject

2. sappy inject

3. manual inject

There is a program usually referred to as tr.exe that comes as part of the
Mid2Agb/midi2GBA toolkit that can inject sappy style audio from midi �les
and return a basic playback ROM �le (playing back audio on actual hardware
is a fairly popular thing to do as it is usually very accurate). It is probably also
the best conversion tool from midi the GBA has (mainly as it is really part of
the SDK). The typical method you will see is summed as up as convert with
tr.exe (usually after making the midi �le as basic as possible), strip the GBA
header and inject at equivalent alignment in the GBA ROM before changing
a couple of pointers to go where things need to be. This is long winded but
works quite well and is one of the more favoured methods for games that are
more extensively hacked (whether it is a good thing or not depends upon your
perspective).

Sappy inject (usually with the later versions of the program) works as part of
the same toolkit there is mid2agb.exe which creates .s �les which sappy supports
for inject purposes. Previous versions of sappy 200X were not that stable so the
tr.exe method took o� instead.

Manual inject works much as the same as sappy inject but with elements of
the �rst method (typically via Zahlman's song editor). It can also be used on
games sappy does not support (assuming you do not want to add support for
it).

Any way you do it 10 tracks per midi is the suggested limit and in the case
of tr.exe it does not appreciate the inclusion of extra metadata type tracks some
midi editors/creation tools like to add.

XXXXXXXXXXXXXXXXX

219

http://filetrip.net/gba-downloads/tools-utilities/latest-gba-audio-ripper-f29863.html
http://www42.atwiki.jp/_pub/blackonix/Tools/

Notable GBA audio hacks

Although some hacks have been noted elsewhere for the most part this doc-
ument is not a collection of hacks but here there are a few hacks well worth
reverse engineering if some of the other and the latter two titles have some
fairly extensive game speci�c documentation included.

Final fantasy The last SNES �nal fantasy games (using Japanese num-
bering 5 and 6) were ported later in the GBA lifetime to the GBA. One of the
main criticisms was that the highly regarded audio from the SNES games did
not make the transition (we have since seen a few other hacks aimed at improv-
ing other aspects of the games) but Bregalad made a series of hacks aimed at
improving the audio and indeed the �nal hacks are nigh on perfect reproduc-
tions of the SNES audio. If you want an example of a Sappy style audio format
hack these are well worth having a look at.

Advance Wars warsworldnews guide to it

Golden Sun Atrius did a lot of work with the sappy audio format and
Golden Sun was the base ROM for a lot of it up to and including adding voice
acting to the game. Hacker led voice dubs have happened in the past but it
is very rare and exceptionally so on low power systems that do not have a
�lesystem for their code.

Fire emblem Fire emblem on the GBA saw several audio hacks. An
overview of some of the audio hacking work and a bit of general audio hacking
can be seen at feshrine.

4.2 Video

The GBA and DS are capable of playing video and as such several games use
full motion video of various forms in their games. On the DS at least a company
(now owned by Nintendo) called Mobiclip made a format used for a lot of the
games.

Reverse engineering video formats is in many ways one of the hardest things
you can do in game hacking. Fortunately on the handhelds you are quite lucky as
they are not usually powerful enough to allow for some of the complex methods
that make up a modern video format like H264, or indeed that much in the way
of a true legacy format like MPEG1. Mind you the DS homebrew media player
known as moonshell uses MPEG1 for the video as part of the DPG format and
there were ports of MPEG4 ASP aka xvid/divx to the DS as well. The GBA
also saw a codec from the same people that made Caimans. If you want some
history then this post has a bit more.

The traditional thing at this point is to point at MPEG1 coding methods and
say MPEG1 had a �nal draft over 20 years ago at time of writing (late 1992).
Now if you recall back to simple 2d graphics and how just changing a single
tile width could drastically alter things consider trying to work backwards via
analysis methods from there to getting images and then building a compatible
encoder; some DS stu� is somewhat simpler than this but not by a lot.

220

http://forums.warsworldnews.com/viewtopic.php?t=2002
http://forum.goldensunhacking.net/index.php?action=downloads;sa=view;down=4
http://forum.goldensunhacking.net/index.php?action=downloads;sa=view;down=4
http://www.feshrine.net/ultimatetutorial/
http://www.ds-video.com/index.htm
http://gbatemp.net/threads/video-codec-for-gba.354591/#post-5038482
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/mpeg1/

As most hacking work on handhelds does not allow for video encoding or
editing there have to be workarounds to do things. If just ripping the video is
your desire most emulators have recording options and you can augment things
here by changing the video �les so if a game has an ending cutscene or something
you can repoint the intro sequence to play that instead and rip it from there
or inject it into a more suitable game for ripping and by the same logic if you
are �undubbing�/�delocalising� a game you can often just drop the equivalent
video in and call it a day. If you do need to add something to the video the
traditional method used in a handful of DS hacks works o� the fact that video
is just 2d images in the end so you can add images, subtitles and such as sprites
or overlay something; this is quite an involved hack and will probably require
some knowledge of assembly (it is part of the reason hardware was discussed
back in graphics editing) unless the game itself already has images placed over
the video that you can subvert.

As just as reverse engineering a video format is a hard task the act of creating
a new one is equally or even troublesome (and that is before you get into the
likes of software patents that trouble just about anyone wanting to break into
the video encoding world) game developers/companies will tend to buy one o�
the shelf for use in a game.

Do note that video seen on the DS and games in general frequently does
not to have audio built into it so you might have to �nd another method by
which to rip the audio or account for this if you do a basic relink/repoint hack
or undubbing the game (especially if the video length changes).

4.2.1 General video theory

Following on from the graphics and audio is that video can work by tricking
senses with the general idea behind video is you play back enough frames fast
enough and you can create the illusion of movement; the magic number seems
to be somewhere around the 17 frames per second mark although the low to
mid 20s are where it gets better although lower can work depending upon what
you are doing. Updating full images to a screen 25 odd times a second places a
serious demand on system resources (storage space and bandwidth mainly) and
when you think about it most video does not really change much frame to frame
so there are things that can be done. More so than other areas moving video is
still very much the domain of the lossy encoder (several great lossless options
exist but they are mainly for storage, editing and capture purposes as opposed
to playback) and in many ways the DS is no exception. The two principle
methods/assumptions are

1. One frame tends not to change from one to the next.

2. One pixel probably does not change much from the one next to it.

Lossless codecs take advantage of this and lossy codecs go one step further and
choose to lose some information based on those principles. There are a very
wide selection of methods and levels of use of those methods which only get
more complex as time goes on but videos are typically broken up into squares
(quantisation - if you have seen what is usually a high action scene break down
into squares where the action should be this is the reason) or treated as a
waveform (wavelet encoding used in encoders like Dirac and Snow but there

221

was a DS homebrew program called DSVideo that used it). On top of this
although one frame does not change much from one to the next (on average)
inter frame encoding is not mandated and glori�ed slideshows are quite common
on lower powered systems (motion JPEG is typically given as an example) but
some have been seen on the DS as well.

4.2.2 Mods/VX/act imagine by Mobiclip.

First it should be stated Mobiclip (also known by the former name of Act
Imagine) did make a codec/standard for mobile phones and web which did
enjoy a measure of success there but it is nothing really to do with the console
side of things (certainly if you �nd the codec for it nothing much will come of
it).

Although now a Nintendo subsidiary before that happened they sold their
video encoding software for use on the gameboy advance and it became part of
the Nitro SDK so as such became the standard video encoder for DS games, use
of it is not as widespread as the likes of the SDAT audio format for not every
game has video and not every game that uses video uses this.

Some tentative reverse engineering work has been conducted (GBAtemp
thread) and it seems to be a fairly simple format without many of the trappings
of higher end formats. multimedia.cx has some more and notes it used Block
Truncation Coding.

There are also a few versions of the standard �oating about in di�erent games
(VX became mods) so that will need to be accounted for when time comes.

4.2.3 RAD/Bink

Seen usually with the extension .bik it is probably the most well known computer
game video format and it is used everywhere on the PC and home consoles as
well as the likes of the PSP; you can even download a simple playback codec
from the developer's website. The DS has support for it but it has not been
seen in many games presumably as Mobiclip was tied to the SDK quite closely
and those games that have used it have largely been multiplatform titles. For
this document a handful of games from the list were tested against standard
decoders and they worked.

Looking at the various output methods and sales information it appears as
those they support a fairly raw decoding of YV12 encoded colourspaces; YV12
is a subset of the YUV colour encoding method which rather than representing
all three component colours as has been common up until now instead chose
to split the resulting colours into luminance and chromiance which allows some
greyscale compression.

Output of �attract.bik� (a full video taken from a camera as opposed to an
animation rendered and stored as a video �le) from the fairly early game �Greg
Hastings Tournament Paintball Maxd� has info of

Video: YV12 512x192 12.00fps [Video]
Audio: PCM 22050Hz stereo 705kbps [Audio]
It also clocks around 8.36 megabytes and other videos have been seen to use

lower bitrate audio.
Upon upscaling signi�cant blocking can be seen suggesting a measure of

quantisation and as the audio output says there is audio in the �le although it

222

http://gbatemp.net/topic/125374-player-of-vx-file/page__view__findpost__p__3830983
http://gbatemp.net/topic/125374-player-of-vx-file/page__view__findpost__p__3830983
http://wiki.multimedia.cx/index.php?title=Mobiclip_Video_Codec
http://www.radgametools.com/bnkdown.htm
http://www.radgametools.com/binkgames.htm#games

is unknown if it is interleaved or left as blocks (in some cases easier on a system
but non contiguous reading/seeking is not something the DS is good at). Header
appears to start with �BIKi� in ASCII and be followed immediately by a 32 bit
value stating the length minus 32 bits which presumably is the the length of
the stamp and size combined (remember many values will ignore the header or
parts thereof).

?20 appears to indicate sound presence (credits.bik lacks it in �le where
others have it) and there may be a mono/stereo �ag.

100 and C0 appear in the format and seem to indicate 256 and 192 dimen-
sions (the decoder reports double height for all videos including those from other
consoles).

Bik was also seen in Impossible mission with a few di�erent framerates (20fps
for logo.bik, 10 for winning.bik and 12 for losing.bik)

Of special interest is likely to be beep.bik which has following output as the
information about it and was largely blank.

Video: YV12 512x32 1.00fps [Video] Audio: PCM 16384Hz mono 262kbps
[Audio]

4.2.4 Criware

More commonly known as the purveyors of the ADX and AHX audio format
discussed a little while back they do have video formats as well which are largely
wrappers for MPEG video of various forms with the audio being taken by their
AD* format..

4.3 Cut scenes

In addition to the use of video the games can opt to do things in engine with text,
3d and 2d all being employed to various ends. This has two bene�ts to hackers
as it is small, quite easily understood and quite easily manipulated compared
to plain video where replacing existing content is tricky at the best of times (if
you do have to edit video again consider instead that it all ends up in the 2d
engine and inject stu� there outside even the video handling code).

How you actually end up hacking it has elements of 2d imagery in OAM han-
dling (basic OAM animation was already covered), 3d manipulation including
distortion (you can move bones but you can also move vertices) and aspects of
level design where you have to �gure out the format controlling the movements
which will be covered next.

223

5 Game logic

Text, graphics and sound count for a lot and a lot can be done just editing
them (indeed entirely new/di�erent games have been made using those features
alone) but eventually you are going to want to change how the game plays out
or the options of the player within it and for this we turn to editing of the game
logic.

5.1 Levels and Stats

Graphics are you have probably seen are composed of small tiles that get as-
sembled to create a greater image. Levels are much the same although they
tend to come in four broad categories, although unlike graphics there is no un-
derlying hardware to shape things and that means anything goes. The items of
interest are the level itself, the placement of static objects and the placement of
interactive objects (enemies and such which also includes scripted events) and
in many ways can apply to 2d, 3d, text and higher dimensions of games.

1. All in one

2. Layers of the items of interest

3. Procedural generation and dynamic content. Depending upon what level
you are editing at this can still manifest as one of the others.

4. Linked lists of items (maybe with choices/branches).

First �All in one� need not be static or large, this is as you might just need to
do something like de�ne the starting/entry point of your enemies and then the
game will take over from there. For all but the simplest games though it quickly
gets unmanageable unless you make a complex format, to this end it is falling
out of favour with the others taking over. Should you be editing older arcade
style games or throwbacks to them then you might still encounter it and the
GBA/DS has no shortage of throwbacks and ports of old games.

Layers of items of interest will tend to be broken down into categories (the
background, the level itself, the enemies, the extras....) and stacked by the game
engine (indeed this is a feature many walk through walls cheats have used and
on the reverse side how many �hidden� areas are made). A game might break
it down further than that and de�ne the level using a grid system (each piece
being assigned coordinates or indeed de�ne it entirely block by block in a given
pattern). It should also be noted that 3d games sometimes attempt to detect
collisions by the 3d models themselves and their locations; you surely would
have seen or experienced an occasion where a character in a game fell through
the �oor or through a wall. However some other times they de�ne what goes
by another �le, usually generated at the same time the level model is exported,
with the .KCL �les seen in recent versions Mario Kart being a great example of
this, such things can also be used to allow a �ner level of control (in the Mario
Kart example there is road, completely o� road and o� road enough to slow
you down) as trying to calculate this according to where textures are mapped
would be a nightmare; given games still tend not to autobreak for a new line of
text then imagine how much more would be needed to calculate player/enemy

224

locations related to textures. It should be noted that 2d games quite often use
things like the OAM to help control where things are on a level.

Procedural generation was originally quite a common concept with many
notable early games like Elite using it to great e�ect. It fell out of favour for
a while with only a few notable uses like dungeons in dungeon crawling games
like Diablo and Dungeon siege, it is now getting some more attention as people
are learning to constrain it (you have some points a given distance apart, some
extras and then you generate everything in between those points while making
sure you have a route between them in game) and use it to enhance other games
(the many guns of the Borderlands series being a good example). With regards
to the it manifesting as the other types of levels mentioned in this section then
procedural generation can just mean when the game loads up it makes the �le
and then stores it in memory as one of the other methods for use during that
game. Dynamic is reserved for things like GTA that do not model an entire city
but just the area a given distance from the player, however this does extend to
things like enemies only starting to move when you are just o� screen, a trick
which goes back to the earliest devices.

Linked lists are usually reserved for adventure games like myst, visual novels,
puzzle/quiz games and similar works but aspects of it can appear in anything
at points like games where later events depend on your choices earlier in the
game (a branching story) or you have a conversation with choices in a game the
underlying system might look a bit like this.

It should be mentioned at this point that linked lists is actually a program-
ming term; each event is called a node and it contains the data used in the event
and the location of the next node which can be anywhere and can be changed
at runtime quite easily. Linked lists and their variants (doubly linked lists and
trees to name two of the common ones) certainly do exist as game levels and
storage a game might use to remember choices, however a lot of levels that use
these sorts of techniques are in practice closer to arrays (items decoded one after
the other) or scripting similar to the Wizard of Oz and SSEQ audio.

On top of all this is scripted events which are very common and only getting
more so. Here events will happen when certain conditions are met (certain
conditions and locations/areas in a level).

Compared to a lot of other areas of hacking the practice of level hacking
does not get as much attention until a game has tools made to parse/view
levels, at this point the amount of edits available for a game often explodes.
Naturally platform games, RPGs with platform elements, strategy games and
racing games are prime targets for this sort of thing (Pokemon, Zelda, Metroid,
various versions of Mario platformers, Mario racing titles, Advance Wars, Fire
Emblem and Sonic platformers being prime targets over the years) with all sorts
of hacks being made (remaking old games, making boss rush modes, tweaking
levels, hard modes right up to total conversions where the original game is mostly
gutted save for the engine and a new game made on top of that). Most of these
have examples of things you can study in depth and it should be noted that plain
swapping of �les can have interesting e�ects; indeed swapping levels can make
reverse engineering easier as will be seen in the example reverse engineering of
a level.

An interesting technique which has taken o� on the PC but has been around
for a while is watch the game memory as levels can be streamed or might need
to be manipulated at play time and fog of war is especially good for this. It

225

plays right into it as well but much like changing the width of your hex editor to
see patterns in pointers, text and more you can line up memory dumps (again
they can change which brings in cheat making type arrangements) and if you
colour them it can make things even more apparent.

5.1.1 Example tools

The following is a list of a few more well developed tools for the DS and some
source code/format explanations with a worked example in the next section.

There are plenty of other editors you can �nd for various games if you go
searching.

New Super Mario Brothers Treeki's New Super Mario Bros Documenta-
tion

New Super Mario Brothers was Nintendo's throwback to some of the original
2d Mario games but as already covered it instead opted to use the 3d hardware.
This did not stop the levels from being hacked fairly shortly after launch al-
though it would be a while before more fully featured programs and listings
appeared.

Advance Wars Wars World News which is probably the foremost advance
wars hacking related website has a lot of information on the various games in
the advance wars franchise.

Mario 64 The DS got an enhanced port of the N64 version of Mario 64 and
level editors eventually appeared for it.

Homepage Google code page
Filetrip download (XML version of the object database also available there).
The image below shows a nice test map which are always good to search

for as they will often be quite simple and contain most, if not all, the items
available for a game.

Mario kart MKDS course modi�er
Mario kart had �lesystem level swaps fairly early on (indeed it was probably

one of the �rst games to see DS level hacks) and eventually the actual formats
were reverse engineered and level editors started to be made.

226

http://treeki.rustedlogic.net/romhacking/docs.html
http://treeki.rustedlogic.net/romhacking/docs.html
http://www.warsworldnews.com/index.php?page=mapsindex.html
http://kuribo64.cjb.net/downloads.php
http://sm64dse.googlecode.com/svn/trunk/
http://filetrip.net/nds-downloads/rom-hacks/download-sm64ds-editor-mario-64-ds-20-beta-3-f29354.html
http://gbatemp.net/topic/299444-mkds-course-modifier/

5.1.2 Level editing techniques

With some basic theory covered it is time for some practical stu�. A selection
of methods exist to reverse engineer levels and reverse engineering shares a lot
of concepts between ideas but levels have a few slightly more likely to be useful.
Techniques include but are not limited to

� Memory viewing (preferably realtime but savestates can help with this)

� Byte analysis

� Comparing reverse/slightly tweaked levels

� Corruption and alteration

� In game or other level editors (on the PC the o�erings for level editors are
usually skewed towards usability and away from actual ability for good
reason but they can still edit things)

� Comparing levels in game

� Size analysis

� File replacement/swapping

� Assembly analysis (as always)

Worked example

N+ (N plus) is a DS port/remake of a popular �ash game and features a lot of
levels of a fairly simple nature making it a fairly good candidate to see some of
the techniques at work. Unlike the text hacking section things here are probably
not going to be broken down by example and what is here is going to be more
of a showcase of techniques than following the technique that will lead to level
format being fully reverse engineered; most of the techniques here would be able
to reverse the level format in a reasonable timeframe by themselves and there
is usually not a great deal of bene�t to swapping methods as often as will be
done.

Screenshots of levels 0 and 1 (episode 0 in the game).

227

Rather nicely the game provides �les named nds000.lvl and nds001.lvl in the
level directory.

Both start with something similar, have a lot of 0,4 and 1 nibbles (no idea
if it is a 4 bit system) and then end on something else entirely which is actually
shorter in the case of nds001.lvl although the level is somewhat simpler. The
big di�erence between the levels though is the addition of the moving hazard
(the level editor calls it a �oor drone). This might be the E that is not present
in the original level.

Still a bit of corruption to see if the levels are indeed what they claim to be.
Guided corruption for this one rather than simply replacing things with random
data so a bunch of what were mainly 0 at 10 hex though 1F hex were replaced
with 4 hex. Giving

That would be the entire bottom row and another one at the bottom left of
the level. Going back to the main menu though gives

228

That it is a copy of the next level and there is no gold, trap information,
hazard information, door or switch locations in the images there it would appear
to indicate a layered level design (parsing and removing data is doable but not
ideal for low powered systems) but more on that later.

Replacing the 20 hex to 2F hex this time with a run of 2 hex changed the
next row and appears to indicate a bottom upwards level design (�rst rows �rst)
and something of a bitmap approach rather than coordinates. The somewhat
static editing is OK and would reveal a lot if it were to be pursued, however
memory viewing proved too much to stay away from.

One full dump and a search for the new 44444422222222 hex (not assured
to work by any means but not compressed in game means probably not com-
pressed in ram either) netted a single location at 37CFD0 or in the DS memory
0237CFD0.

Before the ram editing could commence though the memory/level was seen
to be refreshed from the ROM itself between that view and the level itself and
the level was not regenerated in real time. However the level overview/layout
was regenerated from ram if a refresh was forced15 and the level was not fetched
from the ROM itself between those, a refresh could be forced by changing the
map preview (L and R buttons) or allowing it to scroll round.

15Having something evaluated repeatedly without the need for a full reset is often desirable
in breaking cryptography and it leads to something called a replay attack. It should be noted
savestates are not terribly useful here as they have a habit of overwriting memory and in doing
so you lose your edits. Likewise desmume appears to store enough of the ROM in memory
that a simple �system reset� is not enough and you will have to close and reload the now
edited image.

229

Some experimentation said each �line� in the level was about 18 hex long
although it could vary between levels. 00 appeared to be the blank/default state
and zeroing out everything to what would be 188 hex in the original level (where
the E0 is located) left a blank screen. Further experimentation said 4 bits was
not the way forward (playing with the level editor provides an 8 by 8 grid so 64
potential options, although a few of those looked to be duplicates and maybe
rotations) and maybe even 8 bits was not it, or at least the level might change
depending upon what is next to it or with alignment.

Before going on with the items now that we armed with the knowledge that
things might be 18 hex long. Looking at nds001.lvl in a hex editor, deleting the
presumed objects list, the header section and colouring some of the non 0 pixels
before �ipping the resulting image.

It is well worth a try to look for such things/patterns in memory if you can.

Items The level editor also made mention of the potential for items and
the above work would seem to con�rm that they were elsewhere but checking
anyway the fully zeroed out level section (here presumed to be where the 0,4 and
1 stu� stopped being the norm) still had items and continuing to zero things
out after the end of the level broke it and removed some of the items.

230

As everything that survived was still in place but location shifted it says
things

The change in colour is odd but not entirely unexpected as the level editor
allows for a change in background colour, however as there is garbage at the top
of the screen and no timer bar is is more likely the game detected a �time out�
which might be another reason for the change in colour.

The lack of the ninja can be explained by the starting position probably
being axed along with the lower levels of gold pieces.

The shift of everything could probably be explained if the origin of a coor-
dinate system was changed and most interestingly of all the gold diagonal from
the bottom left now shifted to the right hand side of the level has become one
gold and a horizontal platform (called a Thwump in the editor).

Another more precise edit caused a crash (odd as the corrupt state on the
right hand image above could be exited via normal in game commands and
return you to the menu) and another edit leaving the initial bytes of the items
section intact made for a working level but with a few changes (3 bytes at 1D4
changed from 4947 1C to 0000 00 or about 4C into the items location section)
messed up everything after the door switch shifting things and creating new
items. Suspecting an alignment issue the lone 00 of the three bytes was changed
back creating the right hand image.

231

Even if corruption had not revealed the item layout location then with the
pre level stu� not being anywhere near enough to store the relevant amount like
the locations of the gold that leaves the end of the level �le and the somewhat
di�erent data there. Equally the next level (nds001) has few items and it is
smaller.

84 pieces (in 24 clusters) were counted as was a door and a switch, although
it is noted that the door in the level editor appears to have a switch as part of
the deal so it might not be two items. Somewhere along the lines that set the
time for each level, if indeed there are some, might also be necessary to �nd.

The minimum required information is probably the item itself, the x coor-
dinate and the y coordinate. Additionally in the level editor the behaviours of
the drones can be speci�ed (4 drones and 4 behaviours each) but an additional
�eld across an entire array/matrix likely to contain hundreds of items versus
just de�ning another item tends to mean the just de�ning another item option
wins unless by adding an entry to the matrix/array the code will be aligned to
a given value in which case that often wins. Of course just because it is a good
idea does not mean the programmer actually did it (again more than a bit of
ROM hacking is about �xing bugs and errors the original developers made).

Gold is the most common item so the logical step would be to do a dis-
tribution of the �le, however nothing much turned up here at �rst glance and
considering the gold clusters might be di�erent items you might have to consider
that.

With two bytes there is only room for 66 items from the �rst level and this
probably means clusters were chosen if that was the case (odd because the level
editor allows for de�ning single pieces as does elsewhere).

Corruption, minor alteration and pondering how someone should do it is
rapidly getting troublesome but episode 0 level 4 (nds004.lvl) has a simple re-
peating pattern

232

The level in question (highlighted section being the item data)

14 instances of mines of each arrangement
12 instance of gold
A switch
A door
A starting point
Changing a couple of the 53 hex values to 54 hex netted a minor change

(the blue timed mines on the bottom level; concepts �rst seen in relative search
can apply here as well) but other changes of the same values did everything

233

from break the level to completely crash the game (either instantly or runs for
a second and then stops). This probably then points to format done with bits
at a time rather than bytes or maybe rather than coordinates it was a distant
relative to the linked list where the previous entry de�nes the next one.

53 hex = 0101 0011 binary
54 hex = 0101 0100 binary

234

Changing the start from C0 to E0 (1100 0000 to 1110 0000), ignore the timer.

Editing the start makes for odd changes to the end of the items section and was
looked at.
The �nal FC was changed to FD to produce the leftmost image and then FB
which produced the rightmost image

235

That it changes a single piece does not do well for the grouping theory, although
it is technically the rightmost top piece that has been changed (there is no item
that is both higher and further right). A single value (note not binary) change
changes location by 25 pixels with right on the level being positive. This speaks
more to items being de�ned bottom up, line by line (but with the ability to
�skip� lines unlike the obstacles) and left to right. FE however stuck it above
the rightmost gold pieces (a change of 57 pixels) but changing to F simply moved
25 more pixels from there to the right so maybe a di�erent type of grouping.
This pattern held until 7 was picked, at which point the following happened

It should be noted 7 does not have the upper bit as a 1 where the others did
and looking at what happened to the image the upper piece of gold does appear
to be on the rightmost part of the level again (7 hex = 0111 binary, F= 1111
binary).

Changing the F part did all sorts of crazy things similar to above including
adding invisible items, things to the map that were not on the level but it
is desirable to �nd the previous piece of gold as that would give a clue as to
the length of values. It is also not completely certain that items are grouped
by themselves (could be gold in one section, mines in another, other items in
another).

Things were not immediately apparent here so returning to the level editor.
Cheat search was used to see what changed when things were added or

removed from a location (a basic di�erence search in this case)
020DFB00 seemed to be a counter/pointer limit (changing it to a lower value

would remove items added later)
020E0840 appeared to be the selection box location
[to �nish]

236

The beginning of the levels 3 hex through 9 hex always seemed to be
??306945EA1004 where ?? could be 00,01,02,03,05,07,08 and 09 with 03 being
the most common by far and 09 only seen in nds194, nds175 and nds165 and
08 once in nds182

00 through 02 hex appeared to be **$$ where ** was usually 84 or 04 and
but was changed to 7C in nds052, nds026 and nds160

$$ was often 7F or 80.
Also as the items stayed in place it would appear there was something to

possibly indicate the item section which is usually where the header steps in.
No apparent pointers but it could well be a calculated value.

[to �nish]

Timers Timers in levels were of interest so an item section was trans-
planted wholesale from another level and the di�erence being zero padded. It
created not a perfect replica of the items but a close one as there were additional
items, the timer however was the same as the what the original level would have
been thus implying that it was not stored in the level �le. As a further test a
level was outright replaced with another yet the timer for the level remained the
same as the original level's; it was di�erent when that donor level rolled around
but do make sure of this when you change things as there are few worse feelings
than realising you wasted a lot of time over a coincidence.

5.1.3 Stats

Although games can be built without using this concept it is surely fairly easy
to see how item, enemy and player statistics/characteristics can be used to make
for a better gameplay experience, if it can be used in a game, or added into one,
then they may want to be edited. ROM hackers are then concerned with the
storage methods and limitations of these statistics.

The limitations are usually fairly obvious things like if you �nd your stat is
de�ned as an 8 bit value you have 256 possible combinations at most, unless
you change how it all works which can be quite di�cult. Indeed the only times
it really gets attempted is for converting games from 16 bit encodings to 8
bit encodings, or if the game uses a more conventional database format and
access technique for the information in question which allows for such a level of
manipulation.

How the statistics themselves are stored is as many and varied as anything
else you have seen in this document; these things can be basic binary tables
(extremely common in older games, ports of them and not uncommon in newer
titles), something resembling a CSV �le (rows of information separated by com-
mas), pages of XML esque languages or indeed XML itself, proper databases
(not so much on the handhelds but home consoles and PC games can and do
use SQLite type arrangements all day long), or in the less fun scenarios buried
in with the game code itself (it might not have been that way in the source code
but compilers are wonderful things and will sometimes optimise code for you).

The databases can be self contained, they can be linked tables of values, they
can use pointers, they can assume aligned values (similar to how you probably
lined up the names and pointers when pulling apart a container/archive format),
can be scattered across a �le, can be calculated (8 bit means 256 combinations
but nothing stopping you having a range of 1000 to 1255 or more commonly

237

for things like health where you will multiply a constitution value by a given
amount and add a bit go get a health value) and much more.

In short they are usually a database of sorts so database programming comes
into e�ect, this is not going to be covered here as it is very long and probably
not that useful as games tend to be fairly simple (they tend to be small and
static meaning no bene�t and potentially even downsides for using high level
database concepts), fairly logical (although do not count on plain values being
there) and unlikely to be truly obfuscated or encrypted.

Before turning to assembly hacking though do give the thought exercise type
method a try; you can get quite far just by working through what you would
do (240 enemies with a name, 5 stats a piece that do not go beyond 255, each
of those enemies is linked to another, of the �ve elements in the game it is weak
to how many of them?). What you would do and what a programmer will have
ended up doing might not be that di�erent, or at least they would have enough
in common that you can start �guring out the rest in a similar manner to how
you would �ll in the missing parts of a text encoding.

It should be noted many in game encyclopedias/bestiaries will have been
made from the database before the game is put together so do not expect things
to change there if you change the game, or indeed the reverse and expecting
changing things there to change the game.

On another note in game AI may well be �nely tuned to the original game
stats and changing them can render the stock AI far worse than it is in the stock
game, however we will cover that more in the AI section and if you just want it
for multiplayer with humans then carry on.

pipian.com ierukana has a nice example of pokemon stats.

5.1.4 RPG randomiser

The concept has been around for some time but in recent years it really seems
to have taken o�. Games like Pokemon, Medabots RPG as well as more con-
ventional �RPGs� often have de�ned zones for enemies or prede�ned battles, or
in the case of medabots you will only be �ghting medabots made of the same
parts. You then get to �gure out a way to alter this. Do note a lot of games
might provide you with something to look at to in�uence this. Classic examples
would be a �conservation� area where you visit old enemies, a bug like pokemon
sea tiles, an arena of some form or even certain kinds of mulitplayer. Similarly
a game might change the monsters in an area for a sequence or something and
that can be very valuable. Alternatively it can be very simple and you only
have to in�uence the outcome of the random number generator; if a game has
a bestiary then if the enemies from a similar area have similar numbers it could
well be a contained random number generator (generate me a random number
between 4 and 6, or more likely generate me one a normal random number and
add or multiply to get me to the number for this map). It is up to you to see
whether you wish to try to stop end game bosses potentially appearing in a
start area, though such things can be fun.

5.2 Compression

Compression is seen in all areas of ROM hacking and will continue to be seen
as developers brush up against limits of bandwidth and storage space all while

238

http://www.pipian.com/ierukana/hacking/ds_evos.html

having more CPU cycles at their disposal. There are countless permutations
and implementations but broadly speaking the two basic types will be lossless
and lossy. Both types are named for their dominant characteristic; lossless able
to compress and reconstruct an exact copy of the original �le and lossy taking
an original and losing some hopefully irrelevant or less noticeable information in
an attempt to make the data smaller (in sound for instance the human ear will
certainly not be able to hear above 30KHz so if you had captured everything
up to 50KHz and then lose all the sound above 30KHz16 you will save some
space at the cost of lost data). There are things aimed at real time compression
(real time communications of data generated on the spot such as a voice call)
and things aimed at compression for storage and later transfer and the latter is
what ROM hacking tends to deal with the most.

Compression is not perfect so if you �nd yourself reverse engineering com-
pression do not be surprised to see a compressed section that is the same length
as the piece it compresses (although this can also be a technique to allow a
bigger range by means of a double reference) and equally do not be surprised
if you see a way the compression could be further improved both within and
outside the limits of the format.

5.2.1 Lossy

Various DS games have been seen to use lossy methods to encode audio, graph-
ics and sometimes video. For the most part these will be known methods like
JPEG for images, various audio formats and game related video formats (al-
though a complete description of the VX and mods video formats aka act imag-
ine/mobiclip is still pending) with the most complex part of it being if the
existing format is wrapped in something. This is probably for the best as lossy
compression draws from a whole host of �elds including things as far a�eld as
psychology and biology and tends to make for complex formats.

5.2.2 Lossless

Lossless compression will manifest in one of four basic ways, although the �rst
three will be the most common.

Dictionary (sometimes called referencing) - here the compression will reference
an earlier part of the �le (be it the whole �le or a �sliding window�).
LZ compression and the special case of it known as run length encoding
(RLE), which was popular back on earlier systems, are the two main
types. Here the �le will reference a premade dictionary of terms (rare
in modern implementations) or use the �le itself to generate a dictionary
which, depending upon the method, will either be the �le itself or shipped
with the �le.

Statistical Hu�man is the main type of compression to use this sort of tech-
nique. The idea is the compression uses reference values of various lengths
to refer to sections of original �le with the most common types getting
shorter values and the less common types getting longer values.

16Do recall that sampling theory means you sample at twice the rate you want to represent
so the sample rate to represent sounds of 30KHz needs to be 60KHz.

239

Filtering depending upon how you look at it this is not really a compression
and more of an encoding but the GBA and DS hardware treat a version of
it much like compression (BIOS functions to handle it) so it is here. The
graphics format known as NDS 1bpp (1 bit per pixel) uses the idea that
even if it eventually gets turned to 4bpp if you have a two colour image
(usually a font) you can be assured that each pixel be one of two values
and as such can be turned into a simple 1 or 0.

Predictive Technically another statistical method but it relies on the idea that
certain parts of the �le might be predictable and is usually very application
speci�c.

Christina Zeeh's introduction to compression has a fair amount of background
information on the history and background of the LZ compression family and
others.

Additionally, and as has hopefully be made clear by this point, game de-
velopers and coders in general are encouraged to reuse existing concepts and
values so tiles may get used repeatedly (half a body might have twenty versions
of the top half for various animations), 3d in general is well suited to it, pointer
level text compression was mentioned, dual tile encoding does have uses, fonts
have been seen to reuse parts, the whole notion of the palette/texture/material
swap... so although these general use compression methods are a key concept
in hacking, especially of modern handheld games, be prepared to encounter
methods more useful to games in general.

5.2.3 Basic theory of the actual implementations

This section will detail the basics behind the most common compression methods
seen on the GBA and DS and some techniques that can be used to handle them.
Actual programming level discussion is reserved for the next section. Note that
custom compression has been seen several times in the wild but it is usually
not that di�erent to regular compression (it is hard to de�ne a useful type of
compression that is truly new), this means that even though most existing tools
will fail if they are set upon custom compression that as most are open source
it should not be that hard to get them running again once you �gure out the
minor di�erences between the methods.

GBA compression More so than the earlier consoles, which tended to have
the occasion bit of RLE and later on some LZ, the GBA took to compression
in a big way and it became a �xture of the system. Various things were made
to handle it in the hardware side of things and from the hacker perspective.
headspin's guide details a lot about compression and how it can be used on the
GBA and that feeds quite a bit into the DS as well.

SWI calls (BIOS supported compression) The GBA (and DS for
that matter) feature some basic decompression algorithms as part of the readily
accessible BIOS, this means anything can call the BIOS functions to decompress
the �les into memory. Naturally the debugging grade (and for that matter some
more general use) emulators can watch and list any BIOS calls and allow you to
get a rough idea of where �les are, how they are compressed and even when in

240

https://ece.uwaterloo.ca/~ece611/LempelZiv.pdf
http://members.iinet.net.au/~freeaxs/gbacomp/

the game they are reached for, many tools compression tools can then use these
lists to extract �les.

VRAM and WRAM safe The VRAM is the video ram and the WRAM
is otherwise known as the main memory or work ram. With the GBA cart being
memory mapped on the GBA things could be copied right into the VRAM
by various methods but the VRAM carried a restriction that all destination
addresses had to be aligned to 16 bit aligned (WRAM could do 8 bit). This also
meant that any writing, say from decompression, had to occur 16 bits at a time
and necessitated VRAM safe compression methods be devised and implemented.

Searching and dealing with compression There are three methods of
dealing with compression on the GBA

1. SWI logs

2. Assembly/known locations

3. Compression searching

The GBA has several decompression algorithms built into the BIOS and by
watching when they are called (logging of SWI calls is available in VBA among
other things) the locations in the ROM will tend to included. Not all com-
pression is BIOS compatible and not all BIOS compatible compression uses the
BIOS functions to decompress it (being housed in the BIOS they are something
of a tradeo� between size and speed so developers sometimes wrote their own
functions). Should SWI logs be available then several of the tools mentioned
in the compression tools section will be able to parse them and extract things
accordingly (GBA Multi DeCompressor being one of the main ones), or you can
hand parse them and direct a tool to do it.

Known locations is fairly obvious and the idea runs if someone before you
has found the locations it is fairly simple to direct a tool at them (or in the case
of some games the tool may have already been made). Assembly may well have
been used to get to know locations though and it is usually a minor tweak on
the standard tracing technique (tracing is covered in a little while) of �nding
something in ram and working backwards from there to see what put it in there
and if it had a stop for or did decompression along the way. This way if a custom
decompression method is used then the basic idea will be apparent to person
doing the tracing (custom usually means a slightly di�erent �ag, �ag meanings
and number of bits over which it operates rather than a whole new method of
compression).

Compression searching will probably become more obvious after the worked
example and relies on the idea that the compressed �le will usually start with
10 hex in the case of GBA/DS BIOS compatible LZ and after that there will
be �ags and similar mechanisms the compression method uses to function/allow
decompression. Various tools have been made but as far as most people working
in GBA are concerned

241

NLZ-GBA Advance (which doubles up as a graphics editor)

unLZ-GBA

242

Crystaltile2
Crystaltile2 also features compression searching support and can do it for custom
�ags of various forms as well. It is available on the tools pulldown menu of the
hex editor window but be warned that mass decompression has a tendency to
make the program crash if it encounters too many false hits for compression.

243

Lz77Restructor 2
A relatively new tool but a nice one; you may want to play with the �lters
option as it can restrict by pointers, widths, sizes and as well as deal with text
(using custom tables if necessary).

GBACrusher Decompression tools were fairly common and they did a
fair bit of compression as well but for most the dominant tool for generated
compressed �les was known as GBA Crusher. It should be able to do all the
BIOS compatible methods.

DS compression Compression took o� on the DS but owing to it being
reasonably well implemented few companies ever made their own custom com-
pression formats in the traditional sense and just used ones from the SDK or
other known formats so it went from being the bane of ROM hackers to just a
minor irritation.

SWI aka BIOS calls The DS BIOS has support for various forms of
compression and new to the DS compared to the GBA was the idea of callback
which helped work around the DS ROM not being mapped to memory (gbatek
calls it slow but it allows larger �les to be decompressed without the developer
having to provide a checking function to see when parts have been decompressed
and the next one can be fed into it).

DS �rmware compression Not really relevant to ROM hacking but the
DS �rmware has all sorts of compression stacked together in it and the source
code makes for nice reading.

Download from Chishm's website

Types You will often see mention of types of compression in DS ROM
hacking discussion and this refers mainly to various implementations of LZ com-
pression seen on the DS. They are so named because the �les using the type of
compression usually start with the number (in hexadecimal) but it is also worth
noting compression will often also be indicated by the �le name (typically LZ
in the name or the name/extension ending with an underscore).

244

http://chishm.drunkencoders.com/NDS_Projects/fwunpack.zip

� LZSS - more or less what the GBA/DS BIOS use and other common
compression methods seen on both the GBA and DS use.

� Type 10 - this is the classic GBA WRAM safe LZSS based BIOS com-
pression and only one supported by SWI calls.

� Type 11 - another LZSS based compression which appeared a few years
into the DS lifetime and is capable of achieving better compression than
type 10 at the cost of some speed.

� Type 40 - probably the newest type of LZSS compression seen on the DS.
The �rst notable use was in Golden Sun Dark Dawn although 11 is still
used extensively.

� Type 30 - this tends to indicate RLE

� LZE- mainly seen in a couple of games in the Luminous Arc series.

� LZ77 - not seen so much any more (the 77 referring to the year in which
it was cooked up) but some people erroneously refer to all LZ or LZSS
compression as LZ77, it is very similar to LZSS though and nobody really
gets confused if you con�ate the two.

� Binary/backwards/bottom compression (sometimes dubbed BLZ and not
to be confused with LZB)- DS binaries (mainly just the ARM9 and ARM9
overlays unless it is a download play component) use a �le end �rst com-
pression that is still LZ but done in reverse for various reasons. Decom-
pression is widely supported nowadays and compression can be done too.
This compression is �le wide but there have been instances of compressed
�les included within the DS binaries.

� Hu�man - (tends to be 20 to start) where LZ and most others are con-
cerned with the immediate value in front of them and if it is related to
an earlier section this considers the �le as a whole and assigns the more
common sections a shorter reference value and the less common ones a
longer reference value.

� RLE. A special/simple case of LZ that works on a given string or sec-
tion and just compresses repeated values for as long as they run. Not as
e�ective as LZ and others but very fast and so quite common on older
systems.

� Yaz0. Named for the ASCII magic stamp it starts with and one not
tending to be seen on the DS. It is in many ways a slightly enhanced
version of RLE (not quite enough to be called proper LZ) but it is seen
quite a lot on the gamecube, wii and later Nintendo handhelds. Quite
often used with the u8 archive format that u8tool can parse. There is a
related format for the BIOS called Yay0.

� Packing and �ltering. As mentioned in graphics the GBA and DS BIOS
allows for �ltering of data to make 1BPP and runs where there is a single
value increase each length a run of the same value which compresses far
more with conventional compression methods.

245

Various tools have been made to handle compression with two of the big ones
as far as the DS is concerned being DSDecmp and Cues GBA/DS compressors
although there are multiple methods to e�ect decompression on �les.

5.2.4 Compression at hexadecimal level

This section will focus mainly on LZ compression as that is the most common
and decoding it is fairly illustrative of the techniques and concepts involved.
Compression often radically alters the �le at hexadecimal level but it will usually
be implemented in a given manner.

� Magic stamp. Mainly on the DS formats or home consoles rather than the
older consoles. Can be hexadecimal or ASCII/unicode.

� Flags. Mainly seen in LZSS these are little �ags inserted at compression
time to tell the decompression tool if a section is compressed or not.

� Compression instruction (usually where is the �le/what is it called in the
dictionary and how long to read the previous reference for).

Some implementations stick �ags here and there in the �le for various reasons
although usually as a message to the decoder to skip this section or note it for
later.

The instruction component is usually a two part operation merged into one.
One part will be the length of the previously seen string and the next will be
the location of it (either as an address or reference). Common deviations from
the method discussed above include the order of length and location can be
swapped, how many bits will be used for each can be changed, what sort of
alignment is used and how things are addressed. Remember LZ is often dubbed
a sliding window compression so when operating on a big �le (or when limited
to a compression instruction with few bits for the location component) the start
address can vary throughout decompression and will not always be at the start
of the �le.

Worked example The following is the text output from simply running
the gbacrusher program from WRAM LZ.

246

The �rst part is not strictly necessary for manual decompression but it is
nice to have and quite useful when programming a decompression function.

The 10 hex part is a �ag which indicates compression and the 4702 part is
a �ipped version of the length of the original �le (247 as you can see from the
top window).

A search was done for every 00 value as in LZSS they (usually) correspond
to the �ags to tell the decompression tool if it needs to do something or not (not
for 00). They are every 8 bytes in this instance although some implementations
can use 16 bytes or something else entirely. Doing this could well make the �le
longer but once more compression is far from �awless and the tradeo� is useful
for speed and ease of use.

Back on topic the �rst four sections have no repeats (this is quite common
and gives rise to the �les getting less readable as time goes on). When decoding
delete every 00 �ag as you copy it.

The �fth one (highlighted) though has �ersion� from Version repeated. LZSS
di�ers from some other implementations of LZ by having the �rst non com-
pressed value (in this case a byte) encoded as usual. The 40 is just a �ag.

3009 - the �rst 4 bits of that are how much to decompress less 3
Making the number 3 less means it could theoretically have 3 more bytes one

day and as the number will not be less than 3 (2 bytes for the compression �ag
means a minimum of 3 bytes to be worthwhile) it make sense to start counting
from 3.

The second 4 bits are 0, technically these are the most signi�cant bits but
as the �le is small they are not present yet.

The next 8 bits are one less than the distance to count backwards (in this
case 9 meaning A hex) which starts from the compression instruction value (or
if you prefer the exact value back from the �next non decoded� symbol.

The next few blocks are uncompressed but another compressed chunk soon
appears

A020
A bytes + 3 = D hex long
20 = 21h back.
Repeat as appropriate until �le is decoded.

247

An aside on editing and viewing compressed �les Editing a compressed
�le at hexadecimal level is possible and some �nd it tempting to do however you
never know if a fragment will be used later in the �le unless you check (which
usually means you decompress the whole �le anyway) and although it is fairly
obvious with text if you are dealing with graphics or a function that operates
on an unaligned bit level it is worse so it is usually best to decompress, edit and
recompress.

Equally compression when done to text usually means most of it is still fairly
readable (especially as it tends to be aligned to bytes or higher) and to a slightly
lesser extent so are some levels and early parts of headers (give or take �ags)
meaning although it renders a lot of graphics near unreadable a lot can be seen
and guessed at without having to deal with compression.

Working around compression Just because a �le was compressed in the
original game does not mean it has to be compressed in the end hack you make.
It is not always as simple as just turning up with an uncompressed �le, though
this can work for proper functions that attempt to detect compression and
act accordingly. Sometimes it can be as simple as changing a �ag somewhere
(recall the example from El Tigre) but it can also be a fairly basic assembly
hack, speaking of assembly and binaries the DS binary compression tends to
be noted with a �ag in the overlay table, to this end you can clear this �ag (1
= compressed, 0 = uncompressed http://gbatemp.net/threads/recompressing-
an-overlay-�le.329576/#post-4387691). In the case of an assembly hack the
general idea is compression has a source and a destination with operations be-
yond straight copying in between but if you replace it with regular copying
all will work as it was. The slightly more crude workaround is �gure out the
uncompressed �ags (harder but not impossible with RLE and Hu�man) and
insert them throughout the �le and another take on it can be seen in some of
Labmaster's work in dealing with compression in the GBA game Golden Sun.

Equally if you are dealing with a custom compression the data will usually
be uncompressed to run so you can often snatch things from the ram and work
around the compression later or use it to help work around the compression for
if it is just a slight tweak on an existing method which you already know this
can practically give the game away.

5.3 Cheating

This is not using any �hidden� button combinations/activation conditions to
allow for a di�erent mode of operation to normal play but actually editing how
the game works. Of all the areas most likely to sit slightly aside from ROM
hacking it is cheating but an appreciation for how cheats work is very desirable
when �rst learning about some of the game logic side of hacking and certainly
as a lead in for assembly.

Classically there were two types in RAM codes (often called action replay or
gameshark depending where you are in the world) and ROM codes (often called
game genie).

RAM codes acted upon the game memory where ROM codes adapted read
requests for the ROM image to whatever the code wanted.

RAM codes were often considered simpler in nature, this is not really a fair
assessment but due to the overwhelmingly large amount of simple codes it kind

248

http://www.romhacking.net/documents/253/

of stuck. Equally ROM codes were often able to do some very far reaching
changes, changes that would have been extremely hard to do via RAM editing,
and were slightly harder to make, and are also not as common.

As ROM/game genie codes operate on the ROM they can be patched in
very simply to the ROM itself, RAM codes need a device/emulator with sup-
port for them or a program to edit the cheat in or hook the game code to add
a small cheat engine. Having code run on top of the existing code is some-
thing which is not really viable for older systems, especially not in a somewhat
generic/automated tool type manner. The GBA and DS do feature such things
though with GBAATM and DSATM being the main two programs for the GBA
and DS respectively, the GBA does feature other tools like GABsharky but
most of the earlier e�orts have been overshadowed/supplanted by GBAATM.
The classical lines were blurred in recent years as the game genies turned to
action replay style codes and action replay devices also took up save editing and
save injection for various consoles, on top of that DS ROM images store their
game binary in the RAM (they have to as the DS game cards are not accessible
in ram) so some of the better cheat makers used action replay codes to edit the
binary in ram to great e�ect.

There are many types of cheat code and devices with di�erent implementa-
tions, this guide will probably shy away from going into depth but in general
it is broken down to three components (and usually encoded in the following
order)

1) the type of code (constant writes, conditional writes, boolean operation
and some more exotic types).

2) the memory address
3) the payload if any is necessary
The main reason for covering this is understanding how cheats work and

how they work with the system often leads to a deeper understanding of how
the system works in general and provides a nice in for those wanting to start
to learn how to code in assembly (the type of operation, location and payload
concept will return there).

Useful links Enhacklopedia

5.3.1 General cheat making

There are many ways you can make cheats but the �rst port of call is usually
a memory scanner of some form. These allow you to scan the memory before
dropping back into the game, changing something and scanning again until you
either get it down to the exact value or a small enough list that you can try
them all by hand.

You have several scanning options available to you including

� Value search (equal or not equal) - if you know the value of your health
or something you can search for it. Does not always work but worth a go
as a �rst pass.

� Greater than/less than search. Here you can search for something greater
or less than a value or �nd all results di�erent to a given value.

249

http://bsfree.org/hack/

� Fuzzy search. Here you can note everything with an eye to coming back
later to see what has changed. Can be combined with greater or less than
most of the time as well. This is quite useful when you have a health or
timer bar without a direct display of the value to be searched for.

� Range search. Not always available and doable if you think about it with
greater than and less than this quite literally searches for values within a
given range.

Exotic codes and terms Various cheat devices allow for some quite custom
and far reaching codes to be made over devices from competitors. Some of these
are to change the internal handling of the cheats but many more can have quite
far reaching e�ects. First though some terms that often come up

� Slide codes. A technique used to generate codes to do the same change
to multiple locations at once, usually used if you have something like 30
troops, each with their own health value and ammo value and you do not
want to use 30 codes.

� Master code. More associated with game genies where they usually bypass
protection and for cheat devices that needed to be set up to work on certain
ROM images.

� Slowdown. Covered later but some cheat devices allow you to slow a game
down by �ooding the CPU.

� Joker code. Codes used when using buttons to activate cheats.

250

5.3.2 GBA cheat making

VBA has a basic cheat option which should be available in nearly all versions
(notably the VBA-SDL-H version does not although if you really wanted you
could use its debugging abilities to do something instead) and the brand new
window of the basic VBA cheat options looks like.

251

VBA-H has some slightly expanded options in cheats and elsewhere.

Regardless of the version most of it is fairly obvious if you have a basic
understanding of the basic ideas of cheats and value representation with hex-
adecimal.

Still

� Search type - Speci�c value allows you to enter a number in the old value
section. Old value will search the previous results.

� Data size - 8 bits, 16 bits and 32 bits values will be looked at. Note that
quite often things that appear as 8 or 16 bits at the start of the game (if
you are only losing a few health at a time that might appear as an 8 bit
value) the value might well use the full 32 bits by the time all is said and
done.

� Compare type - pretty self explanatory. Not equal is useful if you are
searching for something that might of changed but you are not sure how
and for timers that might reset.

� Signed/Unsigned - does exactly what it says and allows you to search for
signed or unsigned values.

� Enter value - only available when you have Speci�c value search selected.

� Update values - this updates original searches to their new values each
search.

� Flag compare - (VBA H only)

� Di�er By - (VBA H only) does exactly what it says and allows you do
select a range of values to limit your results by (if you have only lost 7
health the change will probably not be a full value only capable of being
represented by 32 bits)

252

� Range - (VBA H only) again does more or less what it implies and allows
you to restrict a search to only include or not to include a range of values.

About the only thing it is lacking is a �oating point search but those are tricky
and �oat values are rarely used on the GBA (not to mention would probably
come up on a not equal search). Also lacking are things like bitwise, Boolean
and mathematical functions but if you need those VBA-SDL-H is where you
would look.

5.3.3 DS cheat making

This varies a bit depending upon the person doing the cheat making. Desmume
has some cheat/memory manipulation abilities but many will use tools like
HasteDS and renegade64 or more general purpose tools to hook into emulators
and provide similar abilities. Many more will use tools like Datel's trainer
toolkit which has fairly extensive debugging abilities and even �ash carts like
the Supercard DSTWO and iSmart MM will have minor cheat making options
although their search and functionality is somewhat less than a proper tool they
can still be used for basic cheats.

Desmume Should be available in all versions of the program (no need for the
dev version), for Linux you may need a given version.

[note 2014 update] This is a somewhat older version, the newer builds have
a signi�cantly improved cheat engine.

Main window, exact and comparative search

It is split across a few screens although for the most part it is fairly obvious
once more.

Select size - selects for values spread across a given number of bytes. Note
once more that low values might be using larger sizes.

Sign - unsigned or signed.
Select search type - exact value searches for a given value and comparative

search allows you to search for anything (life bars and other such things without
exact values).

On the comparative search > ,<, = and != have their usual means of greater
than, less than, equals and does not equal.

Perhaps counter intuitively you have to close the cheat window to get the
game to run again before jumping back to the search and re�ning it.

253

Emuhaste Emuhaste project homepage
Filetrip download
Realistically you will probably only use it with desmume but none the less it

is a powerful cheat searching engine and includes the ability to dump memory.

Basic usage is after you set up the ini �le to run the emulator, press snap
process. You do not need to search for a value to begin.

Inc(rease) searches for a value that increased in size
Dec(rease) searched for a value that decreased in size
Di�(erence) searches for a value that changed in size (up or down)
Equ(als) searches for a value that remained the same.
Data length allows you to search by values of a given length. Float search

is not much use on the DS but it is there and sort of works.
Set search range unlike the others is not a value limiting search but an

address range.
The �le dump �pulldown� menu allows you to dump the DS main ram which

can be used to help �nd pointer codes.
In the param & string search box you can type the value to �nd (up to 255

long which is more than enough for most uses). This however has a series of
options you can use

S in front of numbers will mean they are treated as decimal
R at the start of the entry will swap endianness
$ will allow you to search for a string.
< will allow you to restrict a search to less than the value you put on the

other side (<S40 will mean only values under 40 decimal will be considered).

254

http://i486.client.jp/emuhaste/
http://filetrip.net/nds-downloads/utilities/latest-emucr-emuhaste-f29424.html

> will allow you to restrict a search to values greater than the value (>S40
will mean 39 decimal and down will not appear)

Innnnnnnn-nnnnnnnn will restrict to an address range.
Basic di�erence searching is available by using plus and minus signs to specify

the change.
As of 4.00 an autotrigger search is available. Here it will trigger search if a

certain memory value is changed according to the command
Format is address:hex you are searching for:command with multiple com-

mands being available if you separate with a comma. Commands as follows
EQ - equal to
NE - not equal to
GT - greater than
LE - less than
MS - multi-search
There was a previous version of the tool known as hasteDS that stuck around

for a while as the rewrite to emuhaste was missing some features but that should
now be a thing of the past.

no$gba As the developer version of no$gba features a full memory editor it
too can be used for cheat making. However it lacks the more in depth cheat
making features seen elsewhere, this is �ne though as various versions are widely
supported by other programs which also support the standard version.

Others Most of the cheating tools are more or less a specialised class of mem-
ory viewer of which there are many (several of the suggested hex editors have
the ability to read process memory)

Artmoney Artmoney homepage
A more general editor but one that found a fair audience in game hacking

circles owing to some more cheat making speci�c features.

RenegadeEX Filetrip download
A general program also geared towards editing with support for several em-

ulators but only no$gba for the DS (although it does support several GBA
emulators). The previous incarnation known as Renegade64 was also a no$gba
speci�c program but for a long time far more stable than HasteDS and emuhaste.

255

http://www.artmoney.ru/
http://filetrip.net/pc-downloads/applications/download-renegadeex-105-f29011.html

Emucheat Emucheat homepage
Another no$gba oriented program and for a while somewhat more advanced

than the other options so it became fairly popular among those seeking to make
more advanced cheats or cut down on the unnecessary

Crystaltile2 Not so much for cheats but can interface with no$gba to
retrieve VRAM and WRAM data. Available under the �DS emulator� option in
the �le pulldown menu.

Datel's Trainer Toolkit This one is actually something more than a
memory viewer, here you have to use a trainer toolkit to connect to a live DS
via a GBA slot at which point you can tap into the memory and edit from there.

5.3.4 Basic making of a cheat

Regardless of the tools or system it is intended for cheat making uses the same
methods. To then end making an in�nite life cheat for Summon Night Sword-
craft Story 2 on the GBA

256

http://www.emucheat.com/

A couple of health was lost and the search button was pressed

257

A few more points of health was lost which made things better but still not
there

258

The process was repeated a few more times

30608 decimal = 7790 hex so 8 bit was probably a bad choice but as the health
was only going down by 1 it worked today.

259

This led to 0300060C so selecting that address and pressing add cheat

Adding a value of FFFF and a description so as not to forget when other cheats
were made gives the end result as

5.3.5 Cheat prevention methods and frustrations

Such things often trouble ROM hackers as well owing to the way they work
but either because of the way they are coded or because the developers wanted
to lessen cheats some games work in such a way that the basic cheat creation
method falls short. Additionally some games can be broken by the use of cheats
on a less technical level; quite often in a RPG type game you will encounter a
�ght you are supposed to lose or you can unlock options that might be viable
as far as the game code is concerned but the game itself was scripted in such a
way that the rest of the story can no longer play out. On a more technical level
timers can be used by many parts of the games to do things so holding them is
not always feasible.

Probably the most basic version of this always on cheat problem is if a cheat
is always on but for a time in the initial boot sequence the game will use the
memory for something else (this is more troubling on the DS if you are doing
something in the overlays that are designed to be swapped out of memory many
times during the game) but that is usually solved either by hooking the game
to use a button activator or similar, changing the nature of a cheat (especially

260

when dealing with timers that the game might use elsewhere) or having a cheat
engine that can turn cheats on at a given time. The rest of this section has
some examples of techniques seen over the years and there is nothing stopping
games from hybridising methods either.

Mirrored, encrypted, checked and calculated values Although all four
are di�erent techniques they work along similar principles

� Mirror values tend to mean the value is written in multiple locations (see
also pointers below) and if one does not match up you can use the others
or crash or something.

� Encrypted do as they say and turn a plain number into meaningless gib-
berish unless you can decrypt it (usually this is a very simple method of
encryption like a plain XOR or a shift or something).

� Checked values. If you have four characters their total health might be 614
and you can store that which means if the sum total of character health
is di�erent something has gone wrong.

� Calculated values are arguably a subset of encrypted values but rather
than say storing a health of 145 you instead take it from the maximum
health of 255 and store 110. This can also be for helping with calculations.

Most of these are easy to work around as if you are searching for in�nite health
it does not matter if you have an in�nite health of 7 or the maximum value
for the most part17 so if you have a working set of values just force the game
to use them always. If you do want to �gure something out you tend to have
to watch values that change at all rather than higher or lower and �gure out
the method used which is usually quite easily managed or dive into assembly
probably guided or initially aimed by a basic cheat search.

Pointers In a DS game the pointers in the header which every DS can read
points to the �lesystem which points to a �le which points to parts of the �le
which may point for further parts of the �le and possibly further (rare but
quite possible). There is nothing stopping ROMs from using similar methods
and indeed several games have been seen to use these over the years which has
several e�ects including cheats that only work some of the time, cheats that do
not work at all (usually thanks to a combination of the previously mentioned
methods), cheats that are impossible to �nd by basic methods (most cheating
methods assume the value remains in the same location).

17If you have a forced health of 7 there might be an attack that always does ten damage
and thus would kill your character and maybe faster than the cheat engine can keep up with,
this value of 7 might be lower or higher than the maximum value a game normally allows
which can mean you can always reload if it is a gun or always use healing magic or conversely
if you have in�nite money but only appear to have 7 in your wallet you might not be able to
buy something. This is not usually so bad as by making the cheat you know the locations in
question and can just play the game/turn them o� and allow the game to generate a bigger
and better set.
A good example of this can be seen in the N64 version of Goldeneye where even with in�nite

health you can die from a big enough explosion and even with in�nite ammo you can probably
always reload your gun.

261

Workarounds include �nding all the locations that can be pointed at (even
with pointers many games will do it in a round robin fashion) and controlling
the lot (a bit brute force but quite acceptable), you can try reading the pointer
at a given point and reacting accordingly if your cheat engine is powerful enough
and you can instead force the pointer to stick at one location and make sure
that now �xed location gets edited.

Pointers within pointers are not only possible but seen on several occasions
and there are occasionally games with proper memory management/allocation
so holding �old� values is not always the best idea.

There are a few tools to handle pointers for cheats with the most notable
one on the DS being Kenobi's pointer tool which you feed memory dumps and
the basic codes into to get the full codes out of (pointers and the initial cheats
used to �x yours).

262

Another nice tool is available in Demonic722's hacking toolkit.

The idea behind it should you have to go manual is in each game there will
be an instruction or memory value addressing the location you are looking at
for your cheats, �nd this place referencing the varying location and it is fairly
easy going from there. It is easier to and indeed most tools want to use a couple
of dumps from plays of the game that use the di�erent locations (they are for
the most part generated at runtime/boot/launch so it should just be a matter
of reloading the game save but it is easy enough to test) for similar reasons
that to doing multiple rounds of tests to narrow down the possibilities is when
making basic cheats. Most of the time the pointer location is �xed so �nding the
thing that points at the would be cheat location will usually solve the problem
although again pointers pointing to other pointers has been seen several times in
the wild. Equally there is nothing stopping a game from calculating a pointer
by adding a simple number to an address as per C style pointer arithmetic;
technically this is pointer in a pointer but if the base value is used in several
other places you might not be able to change it so easily.

Dual values Although this probably is covered by the basic cheat making
methods and in the other things that make life harder it should be noted that
some games can maintain a couple of values for what ostensibly should be a
single piece of data. RPGs make good examples and a similar thing can be seen
in some of the GBA Final Fantasy ports where values can be held say one for
the life bar, one for the on screen value and another for the actual value used
as a basis to form all the others. This gets especially fun when the values are
not just display only and may e�ect what happens in the game for if you have
maximum health according to the numbers you may not be able to use a potion
but the internal health value means you will eventually die as you are losing
health. Those which try to hold timers quite often get tripped up by this.

Stack/register values The ideas behind the terms are covered in later sec-
tions but alongside conventional memory there are two other areas known as

263

http://filetrip.net/nds-downloads/applications/latest-nds-hacking-kit-f29363.html

the stack (which might well be part of memory but should not be considered as
such) and registers which sit inside the CPU and in the case of the GBA/DS is
the only thing the CPU can read directly within an instruction (naturally you
can use the CPU to manipulate memory but it takes a separate instruction).

Here values can be put into a register and/or the stack as appropriate and
referred to/operated upon repeatedly before being written back to the memory
when all is said and done. There is the related idea of a function speci�c pointer
where all the health, stats and such will be passed into a function for a given
period (say a battle) and operated on there but this does not tend to happen
on the GBA/DS but on more conventional systems (and especially with �safer�
programming langauges) it happens all the time.

To this end if you want to edit things to do with it you have to �nd the
resulting actions or actions that edit it and edit those instead as more than
general memory registers and the stack rarely stay constant for long. As that
is quite wordy and hard to visualise consider say the health of a character in
a basic RPG: In the main overworld the character's health matters relatively
little or not at all (assume a game with no poison mechanic for the sake of this
example) but in battle the health might be changing all the time so rather than
write things to and from memory (a relatively slow process compared to the
CPU itself) it will keep the health value inside the CPU memory and edit it
all the time there instead making your manipulations of the regular memory all
but pointless if you wanted in�nite health in battle. Here instead you would
�nd instructions that took from the health value and change them to nothing
(or even add health) or �nd the instruction that triggers the death event if you
run out of health and negate that there instead.

Similarly it was for slightly di�erent reason (certain actions would only hap-
pen when patient health was low) the trainers and cheats for the DS game
�Trauma Center� changed it so if you �missed� with your scalpel or similar the
health would reset to full and you can do similar things to work around values
held in registers. This also works for parts of memory that can change location
and for things like overlays (small sections of code you can drop into a game
to be replaced with another but keeping the bulk of the game code) that might
not always be present at runtime.

5.3.6 Instruction editing cheating

Although assembly hacking discussion does not start in earnest until next section
this is directly related to cheating and so quite useful to know about not to
mention providing a direct link to more conventional assembly hacking. Some
of the very �rst �trainers�18 for the DS that were not scene trainers attempted to
hard patch action replay codes in various ways. This sort of editing is a useful
skill to have and it generally revolves around editing the instruction(s) that
ultimately serve change the value and slightly further down the line it covers
how to do hook a binary to enable a similar e�ect but one that is more directly
useful to a lot of assembly hacking which might need to change something but

18The quotes are there as depending upon the person you are speaking to a trainer is
required to have a selectable menu of some form available (usually at the start of the game),
as opposed to the method described after this. In some cases button combos to activate in
a game also allow it to count as a trainer and not a hack. The distinction tends to be less
observed in devices where making a start menu is harder.

264

requires a larger instruction. It should be noted that for in�nite lives type cheats
there are many ways to die (think even on a basic platformer like NES mario
you can run out of time, fall down a pit, get hit by an enemy and who knows
if hazards and enemies are two di�erent things) and games have long been seen
to have many functions that will change the same value. Of course it can cut
the other way and allow you to have in�nite time in a level but the end of level
time remaining to score function can still remove the time value that a basic
hold this memory location would mess up.

Still going back to Summon Night 2
0300060C held the location for the life counter.
There are two options here
Disassemble the ROM and search for any instructions that look to deal with

the value.
Run the game in a debugging emulator and wait for an instruction to deal

with the value.
The former is a lot easier to deal with (it amounting to running a program

and pressing search in the plain text that results) but it does not always work
for various reasons like pointers (here we know it is not a pointer that governs
it but the if pointers were there it could break it), calculated values/locations
and more. The latter is not so di�cult for a basic hack but it does require use
of a debugging emulator which can take some thought compared to some of the
techniques elsewhere in the document.

The latter option was chosen for this. Shortly before the �rst battle F11
(the VBA-SDL-h jump to debugging command) was pressed

A scary looking window if you do not know what is covered in the following
sections but most of it means very little to this process, and even if it did it is
not so bad if you try to work through what each section means. 0300060C is
the cheat location and it is 32 bits or 4 bytes so to this end when 0300060C or
any of the subsequent 4 bytes are written it needs to be known about or indeed
a breakpoint on a write needs to be set.

bpw {address} {count}
bpw 0300060C 4
Typing c continues the program after it �breaks� and it took a few goes to

get to the battle. Once in battle letting a few hits be landed and continuing
each time

265

Here it is possible to observe the game logic
The �rst two numbers are where the instruction is running from and the

next 4 hex characters are what the instruction is encoded as; if you noticed that
the second were only 16 bits despite the GBA is a 32 bit console it is because
the GBA (and DS) do have a 16 bit mode which it often uses called THUMB.

str r0, r4, #0x54
This means load the contents of at the location in r4 plus 54 hex (300060C

is what it comes out as) into r0
cmp r1, #0x0
This means compare R1 to 0 and a set �ags accordingly (it will be covered

later but on the GBA and DS compares are not all in one instruction per se)
ble $08036c5a
This means if the compare was less than or equal to then branch (jump) to

$08036c5a and carry on running.
Clearly the read the memory value is what wants to be edited although more

advanced cheats might do all sorts of things such as prevent the death check
from working (as with everything in hacking there are lots of options at any one
time).

08036c4e is the location of the instruction that deals with the memory value.
If it were to inject a value instead all would be good. 08000000 is also the location
of the GBA ROM in memory so 00036c4e in the ROM is where the instruction
will be found. Thumb is a somewhat limited mode but it does allow for 8 bits
to be put into a register. �mov r0 , #0xFF� is what the instruction wants to
be (you will also probably want to force thumb mode for the assembler which
is done by sticking .thumb at the start)

FF20 is what it comes out as.

266

One edit later

It can go an awful lot further than this. Also as mentioned elsewhere if you
especially want then in the case of the DS the binary itself is usually found
uncompressed in RAM so you can actually do a binary hack via a conventional
cheat, as indeed several of the more in depth cheats have done in the case of
the DS, and e�ectively turning an action replay on the DS into a game genie.

5.4 Programming concepts

In preparation for assembly it is worth knowing about a couple of program-
ming concepts and techniques. When learning programming a lot of guides and
schools will try to teach some of these on the sly or have them gradually in-
troduced, this works well for many but here they will be introduced straight
up and explained as such. It is certainly not intended to be a programming
tutorial (various guides are linked elsewhere for that) but more of enough infor-
mation to be dangerous and hopefully not impede your endeavours in learning
programming.

5.4.1 Functions and procedural programming. Also return oriented
programming/ROP

You can try to program a program so it runs from beginning to end but for
anything more than a very trivial program or something without any real user
input (pretty much the opposite of a game) it helps to be able to make small rou-
tines you can feed input into and get a result back from (a function if you will).
Most programs then have a core component that runs and defers/branches to
others as appropriate. Procedural programming (which most types of assembly
programming follow as well as languages like C) and functional programming (a
slight tweak on procedural programming) then are both so called programming
paradigms.

Now there are hundreds of paradigms and more being made every year,
being so many the concept has become something of a running joke in various
programming circles.

There are two others of true note as far as hacking is concerned. The �rst is
the other big �normal� programming paradigm which is called �Object oriented
programming� (it was probably the main di�erence between C and C++, both of
which were and still are heavily used in game programming, device programming

267

and the low level sides of operating systems) which changes things by making it
so that rather than leave things to functions, and even when making functions,
you can then merge the data being manipulated and the function you want done
on it into one line, this usually makes the code somewhat smaller and a bit easier
to manage. This is all mentioned as it in�uences the resulting assembly language
as C and C++ are converted into assembly the compiler.

The second is one that has risen in prominence in recent years and is called
return oriented programming (often shortened to ROP), it is very popular with
people hacking the PC and other highly secured systems, indeed the 3ds saw
several ROP based exploits. The best explanation I have heard ran something
like a ransom note is composed of letters that the original author probably had
no intention of being used as such, here various fragments of code do appear
to be certain otherwise quite valid instructions if you jump (or indeed �return�)
to them. Return oriented programming (ab)uses this fact by changing where
things return to and in the process constructing a valid program from the nice
data that the device expects to be in memory. It gets a lot more in depth,
fortunately with it being a new (ish) and exciting technique that does not need
fancy hardware it sees many hacker conference presentations and other writeups
you can go looking for.

5.4.2 IF ELSE

In many programming languages, although typically seen in C and C in�uenced
ones, the IF ELSE construction is all important. The general idea is you can
tell the computer to do something IF a given set of conditions is met but should
they not be then do something ELSE with the two main forms it takes being a
run of IF statements and a �nal ELSE (potentially slower but has uses) or more
commonly a sequence of IF followed by ELSE and another IF followed again by
another ELSE until the �nal ELSE. Either construction allows you check if one
of a series of conditions has happened and act accordingly before either ending
or returning to where it �rst started. In assembly this is a bit more complex
and uses the branch instructions (usually conditional ones) instead but as the
C family is quite close to assembly this is but a fairly minor abstraction.

5.4.3 Recursion

A prime example of the use of recursion is �nding the factorial, this is so much so
that it is usually the example used when teaching the concept and will probably
be done here as well. If you are struggling to recall it then the factorial of a
number is the number multiplied by each number before it until you hit 1 and
is typically represented by having an exclamation mark after the number.

Here you have a starting value, do an operation and check to see if you need
to do another before doing the operation again and checking once more and
again and again19 until you get to the value you need.

If you recall back to OAM methods for moving a sprite (although it works
almost as well for level data and positioning) you might want to move a sprite

19the act of checking and checking is actually considered bad practice, it is better to make
a loop that closes naturally if you can. If you can not (a more common occurrence) you set
an interrupt that e�ectively does the checking for you without much in the way of a speed
penalty and will chime in when the conditions are met.

268

4 pixels at a time until the amount of pixels moved totals 20 so as to create an
illusion of movement (as opposed to a teleport) so here you would probably see
the sprite OAM value(s) incremented by 4 either that used for an interrupt or
a second function acting as a counter.

5.4.4 Iteration

Related to recursion is iteration. Here you might want to solve a problem and
pick a �random� number before tweaking your initial value trying again until
you get to the answer (or close enough). This is usually used where you have a
fairly unknown problem or lack a simple method to do the job.

5.4.5 Loops

Picking which type of looping method you want to use is sometimes obvious and
sometimes tricky. Now, as mentioned several times, C is very close to assembly
so the game programmers are quite free to have not picked the most optimal
method and indeed might well have picked a sub par one. Not so many hackers
��x� this but you can if you want as excessive use of the wrong type of loop can
see a game crashing under certain conditions, or can see things like the battery
drained faster than it should be.

You might have to pick your own if you have to do something like implement
a variable width font. In a VFW hack because you no longer have a �xed
distance to keep the glyphs apart you have to �gure out the width and act
accordingly until you get to the end of the line. Hopefully the text engine has
at least provided the ability to wrap the lines but maybe not or maybe it did
but having characters with a �xed width might have skipped over the �exact�
value it was expecting (a multiple of 8 for instance) and it instead does not know
what to do (say you had multiples of 7 which will not line up with multiples of
8 for some time).

5.4.6 Turing complete

Alan Turing is in many ways considered the father of modern computing and this
is for good reason as he �gured out a lot of the core concepts of computing; one
of these core concepts his name was lent to is the ability to categorise computer
languages as Turing complete which in short refers to a language/machine able
to �nd the result to any computing problem given enough time and space. It is
mentioned mainly as some games feature a measure of scripting and computation
done at runtime which may have fair abilities but might lack features required to
be classi�ed as Turing complete, or if they do it is a kind of esoteric completion
where certain features are abused to generate others (a variation on this might
be how you can use logarithms for �nd the results of a multiplication or division
using nothing but lookup and addition/subtraction). To this end it is usually
best to avoid trying to do calculations in scripting languages that might be
present in a game unless they are a recognised one like Python or Lua, languages
which some games do use.

269

5.4.7 Fundamentals of Assembly

Assembly gets a full writeup wherein the GBA and DS are covered in great
depth but to prevent that section from becoming bogged down with minutia
some of the fundamental concepts are being covered here. Assembly language is
usually characterised by the use of small usually three or four letter mnemonics
to represent instructions as opposed to the more elaborate instructions and
functions higher level languages a�ord. It gets to be quite di�erent as you
change architectures and systems but knowing the following will mean you know
much of what underpins it all with many of the big di�erences coming in the
fact that several instructions have various implementations on the processors
covered here.

Timing Even on ARM, which shies away from the lengthy instructions (it
is one of the core concepts of a �Reduced Instruction� Set Computing which
Advanced Risc Machines specialise in), some instructions take multiple clock
cycles to do so you have to account for this. Unlike the X86 stu� from PCs there
is not much need to consider multithreading, instruction prediction and other
such things which make timing calculations and coding to get the best speed
that much more complex when dealing with X86/X64 processors (such features
are why you are discouraged from simply comparing CPU speeds to determine
the better processor).

GBAtek has more on the timings for instructions and if you recall the graph-
ics section a lot of things on the DS operate in Vblank time in which there is
just shy of 80000 cycles to get things done in before the next screen draw starts.
To time things to such an occasion interrupts are used and vblank interrupt is
one of the main ones used.

Interrupts It was mentioned a little while back but the general idea is you
do not always want to be checking to see if something has happened so instead
you use interrupts. There are various types with various priorities (the big ones
being Vblank (for screen refresh), timer based, DMA (memory transfer), keypad
press and further down the list and coming from an instruction is SWI (BIOS
functions for things like decompression and division in the case of the GBA)
and you can enable and set them at will.

DMA Direct Memory Access is a technique available to all modern systems
that allows a transfer from one part of the memory to the other to be conducted
independent of the CPU. It is essential as the CPU is very bandwidth limited
even if you could a�ord to tie up the CPU with simple data transfer (the CPU
is halted for the GBA and DS during this but it avoids having to lose or save
and restore state information stored in the CPU). That said DS DMA and other
memory transfer benchmarks for the curious.

Registers The fastest pieces of memory in any computer is almost always the
registers. The trouble is they are limited in number, limited in size and quite
often come with a list of provisos which will not be covered right now (ARM is
fairly rational but X86 is less so at �rst glance and probably second glance as
well). In the case of the GBA and DS the ARM7 ARM mode has 13 general

270

http://problemkaputt.de/gbatek.htm#cpuinstructioncycletimes
http://drunkencoders.com/2013/03/some-memory-benchmarks/
http://drunkencoders.com/2013/03/some-memory-benchmarks/

purpose ones you can use for anything called R0 through R12 where THUMB
mode is even more restricted and each mode has a selection of speci�c purpose
ones too that are very useful and as the ARM7 is a 32 bit processor so each
register is 32 bits although it does not always follow like that across computing.

However as no mainstream processor at time of writing is 128 bit in most
senses of the de�nition and few have even an order of magnitude more registers
than the lowly ARM720 it is fairly obvious you can do a great deal with said
small registers and the relative handful of them you have to work with.

The term registers is also used to the speci�c parts of the GBA and DS
memory that control various functions in the hardware and are not part of the
CPU.

Types of instruction and how they work The following details various
good things to know about instructions in general. A note at this stage is
that the idea of an instruction is just that and things can be arranged in any
order; generally it will be something like �instruction, destination register, source
register, immediate value� give or take the source register as appropriate but
this can change depending upon your assembler (certain assemblers aimed at
a given family of processors as a whole do have favoured orders for things but
again it is not set in silicon so to speak).

ARM The �main� mode of the DS and GBA processors, has the most
access to everything of modes and the most powerful instructions for the most
part.

Thumb The 16bit mode (although it can still access and process 32 bit
registers and data) but has access to fewer registers and has several restrictions.
Allows for smaller code and smaller access time penalties on things like the GBA
16 bit cart read bus and games frequently spend large portions of their runtime
in THUMB mode.

Immediate values Instructions can carry values to use within the opera-
tion as part of themselves (MOV R1, #0x1F would store the value 1F in register
R1)

Register values As seen above instructions can read from and to reg-
isters so it can be used to store values and use them as the basis for further
instructions.

Memory values You will eventually want to write something to memory
or read it from it into a register. On ARM processors this requires an additional
instruction but some processors will allow memory locations to be read directly
from the instruction.

20Although this is mainly focusing on the ARM processors as seen in the GBA and DS you
might want to look at the rather extensive Software Developer Manuals Intel put out for their
processors. ARM ones will be linked when they are discussed.

271

http://www.intel.com/content/www/us/en/processors/architectures-.html

SPSR and CPSR Program Status Registers are used to hold things re-
lating to whether a value is signed, any carry values and other such things as
well as being able to disable interrupts. CPSR is the current one where SPSR
holds values in the case of an exception.

GBAtek has more as per usual.

PC, LR and SP Depending upon your assembly tools they will otherwise be
known as R13, R14 and R15.

PC is the program counter and stores where the code is presently running
from.

LR (link register) is used to hold where to jump back to if you branch away;
make sure you note this if you branch and branch again which is a technique
otherwise known as nesting functions.

SP is an optional (but quite advised to use) register to store where the stack
(a section of memory used for the CPU to hold stu� when registers run out) is
held and there is one for each CPU mode.

NOP Short for No-OPeration. It is not that useful in general operations
although it would be missed if it went but ROM hackers �nd it immensely
useful as it quite literally does nothing and replacing another instruction with
it can be done in place without having to worry about some other code jumping
from somewhere else and getting confused as you e�ectively just messed up
the pointers. For instance if you had say a branch IF ELSE arrangement and
you did not care for the IF part you could make it so it defaults to the ELSE
instruction. There is no o�cial NOP on the ARM processors so most read from
a register back into the same register.

Push and Pop Although you can get stu� done with the 13 general registers
you will run out and PUSH simply puts the contents into a portion of general
memory (or sometimes cache depending upon the processor) called the stack
and notes where it is whereas POP restores it. Quite often if you have to write
your own new function you will PUSH everything out of the current registers,
do what needs to be done and POP it all back in before jumping back to where
it was before.

MOV There are a few variations in the ARM instruction set but in general it
either copies the value from one register to another or sets a value in a register.
One should note that unlike what MOV implies the original register is not
cleared or anything and this applies to most processors.

Add Does what it is named for and either adds two registers together, adds
a value to a register or in some cases/processors adds a value held in memory
to the value in the register.

Subtract Much like add except it subtracts. It uses the Current Program
Status Register (CPSR) to help with signed values and such.

272

http://problemkaputt.de/gbatek.htm#cpuflags

Multiply Another instruction with an obvious use although there are several
variations that allow you to do things like add value and then multiply and
slightly more complex functions as well. Floating point multiplication if done
on the CPU will require some thought and �xed point is not much better. It
should be noted the ARM processors used lack a divide instruction although
the DS and GBA provide abilities to do so in other parts of the hardware and
there are other ways like log tables.

Branch The usage is twofold on the GBA and DS. The BX instruction by
itself switches between ARM and THUMB modes but in general the branch
instruction is used to trigger a jump to another piece of code (usually another
function) to do something and then jump back after it has done what it needs
to. The more useful branching instructions are be and bne which are branch if
equal and branch if not equal.

Memory Load/Store Something of an ARM speci�c thing for processors
like those in the x86 family can directly access memory in almost any instruc-
tion but the ARM processors need to manually load and store things using
separate instructions. Generally they are referred to as LDR and STR with a
few variations depending upon what you want to do. 21

5.5 Assembly

Assembler, assembly, ASM and binary hacking are some of the synonyms for
this and although technically they have slightly di�erent meanings for the most
part if you say one and you have enough context nobody will really say anything
although binary hacking is perhaps accurate but not really advisable.

Although all the other techniques mentioned in this guide have examples of
highly specialised knowledge at the heart of them in many ways ASM hacking
has the highest barrier to entry and similarly is the most far reaching for much
like using a hex editor to edit everything it might not be advisable but anything
can be edited using ASM techniques. So as not to beat around the bush learn-
ing ASM will mean you are learning one of the hardest, most speci�c (write
something in Java on one system and it will take minimal or no real work to
have it running on something else that has Java but write something in ASM
for the GBA and you will probably have a very hard time getting it to run even
on the DS) and most involved types of coding and if you ignore some of the
Esoteric programming languages probably the hardest. This however is not to
say that is not worth learning at least some of the basics as it will help with
other areas (as is a common theme in this document knowing how the hardware
works will allow you to push things to the limit without going over or being
able to crawl back if you do) and more importantly some of the techniques can
be done without much appreciation for what they are actually doing behind the
scenes; you might not have a deep appreciation for the nuances of the memory

21There is a security measure present in Windows systems called ASLR (address space
layout randomisation) which means many assembly using programs which naturally have to
handle their own memory are in some ways considered insecure as the feature has to be
disabled for these programs to run. Indeed it has been cited as one of the reasons the ability
to do inline assembly (having small sections of your code in assembly when using a language
like C) has been dropped from some newer development environments.

273

http://esolangs.org/wiki/Esoteric_programming_language

and memory reading systems for a console but anybody can set a breakpoint
and wait for the given instruction to write to a given area and see where it reads
from.

It should also be said although assembly programming is extremely powerful
it is still a programming language so merely knowing it will not turn you into
a computer scientist even if it does often make them easier to learn at �rst so
continue to learn other concepts; if it looks like those that know assembly know
the rest they probably do but they almost certainly learned it along the way.

The obvious question of the reason we care to do all this is everything is
eventually rendered in assembly (even if it is at runtime as is the case with
some the higher level languages) and if everything is rendered in it everything
is understandable through the �lter of it and everything is editable with it.

Although this section aims to be a reasonably complete introduction to as-
sembly you are also encouraged to have a full hardware speci�cation like gbatek
available as it will contain things this omits and be more useful as a reference.

5.5.1 ARM

The GBA uses an ARM7TDMI processor where the DS has an ARM9 processor
(speci�cally a ARM946E-S) and an ARM7 which in practice is a higher clocked
version of the GBA processor22. The instruction set they run is rather confus-
ingly known as ARMv5 but not so many people refer to this with ARM9 and
ARM7 being the usual things people referred to.

They both have two modes of operation with the main one being ARM and
the secondary one being THUMB; although the term secondary is used and it
is in many ways the weaker of the two modes games can and quite frequently
do spend large periods or even most of their runtime in THUMB mode.

It is no bad thing if you are used to the likes of the X86 with nested reg-
isters and the many many quirks let alone having to optimise things for it but
the processors themselves are fairly basic as you would expect from a RISC
architecture with the only real omission being a lack of a divide instruction.
On the subject of dividing the BIOS will be covered later in more depth but it
does provide a divide instruction although it could be faster and some games
will still implement log tables and similar methods (the GBA BIOS goes a step
further and provides square root and arc tangent) and the DS ARM9 also has
a coprocessor of sorts for maths that uses IO to function and supports divide
and square root there.

A selection of links dealing with the various processors
ARM7 o�cial speci�cations
ARM9 o�cal speci�cations
Arm architecture (general concepts)
Quirky's things you never wanted to know about assembly
imrannazar.com ARM7 and 9 opcode map
Smallest ds �le (not so much assembly but worth reading)
GBAtek CPU reference
crackerscrap.com (click documentation) (covers several example assembly

techniques).

22Some people attempted to clock the various ARM7 in GBA mode in various consoles
(GBA, SP, GBM, DS and DS lite) and they are usually just a few tenths of MHz o� between
each other.

274

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0210c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0201d/
http://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf
http://quirkygba.blogspot.com/2008/12/things-you-never-wanted-to-know-about.html
http://imrannazar.com/ARM-Opcode-Map
http://imrannazar.com/The-Smallest-NDS-File
http://problemkaputt.de/gbatek.htm#cpuoverview
https://web.archive.org/web/20100606044629/http://crackerscrap.com/docs.php

microcross.com GNU ARM assembly quick reference A small reference doc-
ument to some of the directives supported.

Silicon errata Programs can have bugs, chips can have bugs and as proces-
sors are increasingly a combination of the two they can de�nitely have bugs
to say nothing of the architecture as a whole; as various points in this docu-
ment have spent time covering the GBA and DS augment their processors with
�xed onboard hardware also capable of processing at some level. Now where
there are certainly undocumented features at time of writing there is not much
known about any silicon errata for the GBA or DS compared to the likes of
x86 processors although GBAtek covers several errors and odd design choices
(remember ARM stu� tends to be custom/application speci�c where the likes
of the x86/x64 processors are largely standard and almost certainly are until
you get to very high levels of science, industry or enterprise). This is further
abstracted away from programmers by most compilers, in some cases assemblers
and toolchains being updated to work around them which could trouble ROM
hackers as it will not tend to �lter down to them. In practice it is more likely
to be the hacker that is at fault or the emulator that does not handle a speci�c
condition (remember in practice emulation is usually an attempt to make an
approximation of a system in code that runs at a reasonable speed) and maybe
an assembler issue; games consoles are often said to use o� the shelf CPUs but
they do occasionally have some tweaks as indeed was seen on the �Z80� the
GB/GBC used.

On a slightly higher level if you read hardware documents for the GBA
and DS you will probably come across prohibited modes and a few mentions of
hardware bugs which usually are related to each other and are about as close
as you will get to seeing something like silicon errata.

5.5.2 GBA Assembly speci�cs

The following section has details on the GBA hardware itself and key things to
know and some basic techniques to employ that make assembly hacking easier.

GBA memory The GBA has several memory sections although most are
usually concerned with the VRAM, the OAM, the WRAM, some IO and the
cart itself.

The cart itself is usually read from the 08000000-09FFFFFF region (a full
32 megabytes) hence most pointers on the GBA being assumed to be either to
the WRAM or the 08XXXXXX region (most ROM images are 16 megabytes or
less so the 09 section and equivalents are rarely seen23). There are however two
other waitstate locations also running for 1FFFFFF known as WS1 and WS2
at 0A000000 and 0C000000 and by default they are slower/have lower priority
than the WS0 location. By default was the key word in the previous sentence
as 4000204 hex otherwise known as the WAITCNT register can change this.

23Of course with no bank switching to speak of that usually means there is 16 megabytes
or of free space quite able to be used just by pointing there which many hacks have done. It
should be noted that several of the dominant GBA compatible �ash cards and some of the
embedded emulators are not so fond of �les larger than 16 megabytes although the former can
still handle them. To this end if you can repoint and keep it under 16 megabytes do so and if
you have an 8 megabyte ROM then use the remaining 8 megabytes �rst.

275

http://microcross.com/GNU-ARM-Assy-Quick-Ref.pdf

Location Size Description

00000000 3FFF BIOS

02000000 3FFFF WRAM

03000000 7FFF WRAM (on chip)

04000000 3FE I/O locations/registers

05000000 3FF Palette RAM

06000000 17FFF VRAM

07000000 3FF OAM section

08000000 1FFFFFF Cartridge location

0A and 0C 1FFFFFF Cartridge location WS1 and WS2

0E000000 Varies SRAM location

Basic overview At boot the binary is loaded and run (covered below) and
runs from the cart itself with everything usually24 being streamed to the memory
as necessary via a combination of DMA and SWI calls that e�ect a memory
transfer by the way they work. Owing to the somewhat low resources things
are fairly tightly managed on the GBA and things in memory tend to be there
for a reason.

DMA GBAtek covers them is great detail but there are four channels num-
bered 0 to 3 and have an ascending priority (the others are paused until the
higher priority channels are done). Each has an independent control register
(which can disable the channel it is responsible for) and three write only regis-
ters to control source (DMA0 can do only internal memory and will not read
higher than 7FFFFFF but the others can do for carts as well), length of read
(word count) and destination. The control register does more than just control
it and can be set to start immediately, at a vblank, at a hblank (this is aimed
at DMA0) and special cases which depend on the channel.

GBA Binary The GBA protocol known as multiboot is not really going to
be covered here as most hackers do not tend to deal with it mainly as most
commercial ROM images do not �t in it, not to mention it is covered in hardware
documents.

The GBA binary (as in actual executable code) is mixed in with the ROM
image itself but it is easily found for the vast majority of games. Trainers for
ROM images (be they the ones Scene groups put on games or ones used for
trainers) will tend to subvert this to run before the game.

After the BIOS loads and the Nintendo logo is checked the �rst thing the
game looks at is the very �rst address in the ROM (08000000) which is the start
of the header and typically contains a jump instruction.

24Various programmers in both the homebrew and commercial side of things have been seen
to attempt to do things to the memory using standard CPU memory write/read functions
and although they are not unbearably slow they are far from suggested practice.

276

http://problemkaputt.de/gbatek.htm#gbadmatransfers

This jump usually jumps to the end of the header where things start getting
set up, very useful for the program to come but not really what you are really
looking for. This part is found a few lines down when the resulting read is next
pointed at a value in the 08XXXXXX range and that is the start of the GBA
binary that actually makes the game does what it will.

Some games like Phantasy star collection will have multiple executables in
the game (after an initial load menu) but this is rare and for these you will
have to use an emulator like VBA-SDL-h or no$gba debug or manually run
through the assembly in long form to �nd it. Although technically possible no
full commercial game, homebrew is a di�erent matter, at time of writing has
been observed to copy executable code to WRAM and operate there like the
DS does with its binaries. This is presumably owing to the GBA cart being
reasonably fast, low latency, having a prefetch command, the WRAM not being
that large (288 kilobytes or 256 if you only use the system WRAM) and the
GBA cart being mapped to memory. Indeed this is expected by many ROMs
which will crash if you use slower memory which is why the simpler (and usually
better) GBA �ash carts use PSRAM or NOR as opposed to the cheaper and
easier to work with NAND �ash memory. There are a couple of games that
might run the odd decompressed function from WRAM though, multiboot can
make use of it and GBAtek notes that many save functions need to be executed
from instructions in the WRAM.

Screenshot of VBA's dissassembler showing how to �nd the binary
The image displayed below shows what the basic disassembly looks like with

a few extras to help you out. The data bounded by the yellow box (which has
been shrunk for the purposes of readability) is what the disassembler makes of
the header and is a nice reminder that disassemblers, for all they might allow,
are just like hex editor ASCII windows in that any good they display is luck,
good standards (which do not apply so much here) or the end user guiding it to
display something useful. The general process in words is the start of the ROM
houses a jump, usually to the end of the header but otherwise slightly later in
the ROM, which is the start of the real binary but most of what immediately
follows that is basic setup so the �rst thing to deal with something in the GBA
binary region (that is to say not the stu� setting the stack pointer) is where the
meat of the binary is.

277

Tracing Tracing is the process of �nding out where something started out at
in the ROM and how it got to where it is which is usually just a read of some
form but there is occasionally compression in the way meaning you will have
to �nd where the compressed data got into memory from and then repeat the
process with that.

Locating graphics with VBA-SDL-Hby Labmaster provides a great intro-
duction to the subject and there are a few worked examples to come in part
III.

The VBA-SDL-h website and help �les also include a listing but a breakdown
of commands and options is still useful. Some debugging tools (especially those
on the DS) are less featured and some programs like IDA have more features in
some cases but the standard set is

� Breakpoints

� Run until

� Read memory and registers

� Change memory and registers

� Search memory

� Maths (VBA-SDL-h supports boolean logic and conventional maths)

� Variables

278

http://www.romhacking.net/documents/361/
http://labmaster.bios.net.nz/vba-sdl-h/#commands

� Logging

The VBA-sdl-h debugging side of things is a command line a�air (press f11
when the game is running to access the debug features and when done enter a
command of c and it will continue) and much of it is fairly obvious but a quick
discussion of what goes is useful.

Breakpoints - these come in various types with break on read from an ad-
dress and break on write to address (and a window a window of a given length
afterwards if you want) being the most useful when tracking down �les and
doing basic reverse engineering. Break on either a thumb or arm instruction at
a given address is available and quite useful too.

Run until - technically another type of breakpoint but here you can set a
point in the ROM and when that address is read as part of an instruction the
game will stop. This is usually one of the �rst commands a debugging emulator
will gain (certainly the DS emulator iDeaS which lacks a few functions VBA-
SDL-h has can do this).

Memory - writing to memory has been seen a handful of times already and
when dealing with assembly level stu� it is even more useful.

Read memory and registers. With memory and registers tending to the core
of the (note this tends to mean CPU registers rather than IO registers but
those are evaluated easily enough). Likewise search options are available for
both hexadecimal and ASCII

Evaluate memory with boolean/maths done. As has been seen several times
values can mean a lot of things and not be immediately apparent but a simple bit
of boolean logic or maths will turn it into plain text (think back to compression
where three was added to the length value) and VBA-SDL-h then has the ability
to do a bit of basic maths on the results of a read.

Variables/expressions are supported in VBA-sdl-h and are not really type-
cast (the closest it comes is anything with a $, 0x or leading 0 is evaluated
as hex and anything else as decimal) so you can have a number as a variable
for use in maths or you can also have the number be a memory address you
need memorised or to be able to referred to with a nicer name than a bunch of
numbers. Registers of the CPU also have their conventional shorthands of R0
through R15 although PC, LR and SP are available as well.

Logging has been seen in the past (SWI logs being used to assist with com-
pressed ROM images) but the idea here is rather than stopping every few seconds
(if you have ever used a whitelist program or sandboxing/con�rm big changes
programs it is a similar feeling after a few breakpoints have been set) everything
is logged for later examination.

5.5.3 DS Assembly speci�cs

Much like the GBA section above this section contains information on the DS
hardware, general modes of operation and some techniques you can use to help
get the most out of assembly.

DS Binaries Types of binary
There are three main locations you will �nd DS binaries.

1. The standard binaries and overlays (arm9.bin, arm7.bin and overlay_????.bin
where ? is a decimal number).

279

2. Binaries and overlays contained within download play �les (utility.bin,
especially if found in dwc directories)

3. SRL �les (usually a developer/debugging leftover).

The standard binaries are the arm9.bin and arm7.bin �les you will �nd in every
DS ROM. Overlays are not restricted to the ARM9 but in practice as the ARM7
is something of a static binary for commercial games used for basic tasks ARM9
tends to be the only processor to have them; in practice there usually less than
ten but some ROM images go up to around one hundred although some go
further and break the one thousand mark.

As for what overlays actually are there are occasions where you might want
to extend the functionality of your code but you do not want to have to take up
a chunk of valuable memory at all times despite the game only needing it every
3 hours or so. This is a common occurrence throughout computing and the way
the DS chose to handle it was too look back in time to overlays which amount to
having small fragments of code you can load into a given memory location and
then run before releasing them and swapping in another fragment. It is quite
possible to have overlays with di�erent intended running locations and having
multiple overlays run at the same time. Most header viewers like NDSTS will
tell you where the ARM9 is found in the ROM, located in the RAM (it can vary
between games) and has the initial point of execution and although you can
read the data out yourself you might have to go to a program like Crystaltile2
to get information on the overlays.

DS memory The DS avoids mapping some things to the main memory bus
with full read/write access (some parts of the �rmware, the cartridge itself, the
3d RAM and some aspects of the touch screen to name a few big ones) which
troubles some things but a lot of it is still mapped to the main memory bus and
it is de�nitely still a useful concept. Equally the two processors have slightly
di�erent maps although there is a lot of overlap.

280

ARM9 (start-end) size Description

00000000-0AFFFFFF - Total memory mapping*

*Aside from ARM9 BIOS at FFFF0000 for 32 KB.

00000000 32KB Instruction TCM

01?????? 32KB TCM (tightly coupled memory)

GBAtek on the TCM.

02000000-2400000 4MB Main ram section

03000000 Shared WRAM

04000000 ARM9 IO

05000000 Palettes

06000000 Video RAM (VRAM)

06000000h 512kb VRAM - BG for Engine A

06200000h 128kb VRAM - BG for Engine B

06400000h 256kb VRAM - OBJ for Engine A

06600000h 128kb VRAM - OBJ for Engine B

07000000 OAM

GBAtek has more on some of the VRAM quirks (see LCDC)

08000000-09FFFFFF 32MB GBA ROM (no mirrors in DS mode)

0A000000 GBA save RAM

ARM7 size Description

00000000h ARM7-BIOS (16KB)

02000000h 4MB Main Memory (shared with DS)

03000000h 0-32KB Shared WRAM (0,16 or 32)

03800000h ARM7-WRAM (64KB)

04000000h ARM7 I/O

06000000h 256K max VRAM allocated as Work RAM to ARM7 ()

08000000- 09FFFFFF 32MB GBA Slot ROM

0A000000h 64 GBA Slot RAM

On sharedWRAM The DS allows a small section of ram to be shared/split
between the ARM9 and ARM7 and it is mirrored repeatedly although in this
case 37F8000 hex is the interesting one which allows for (and a couple of pro-
grams have been seen to use) a single 96 kilobyte block for the ARM7 as it has

281

http://problemkaputt.de/gbatek.htm#dsmemorycontrolcacheandtcm
http://problemkaputt.de/gbatek.htm#dsmemorycontrolvram

WRAM right after it. WRAMCNT controls the allocation although only the
ARM9 can do anything about it.

TCM On the face of it most people would assume the TCM is a type of
CPU memory cache and although it could be used as such a feature in practice
it is a small memory block that can continue to operate during DMA transfer
(assuming all it needs is inside it) although DMA can not access it. GBAtek
has more.

DS IO section 04000000 for both the ARM9 and ARM7 house IO for the
DS which includes values of controller input, DMA, screen handling, sound as
well as the locations to used for the maths coprocessor/functions (a signed 32
or 64 bit division function clocking around 18 clocks for all 32 bits or 34 clocks
otherwise although it has a �nished �ag and a 64 bit square root function lasting
13 clocks with a 32 bit output).

GBAtek naturally has a complete listing and covers their contents and usage
in the relevant sections and a lot of it was already covered when graphics and
sound were covered.

On DS memory usage With most DS �les using �le level pointers there
can be the impression you are granted as much memory as the pointers will
a�ord and indeed many games will within reason be able to manage it to the
point you are more likely to run into problems with screen positioning. Some
games however do load say the entire script or �le into RAM and use it from
there meaning you either get to limit your text (or more likely if it is a Japanese
game do an 8 bit text encoding conversion), code in a streaming ability or try
something more exotic like trying to store things on the GBA cart or abusing the
�le level pointers to point somewhere in RAM and injecting it there somehow
(remember values are probably calculated from pointers in the �le to guide
things once it is found in RAM so you could get something working there by
using a far larger number than it expects).

VRAM on the other hand you will frequently run into problems when ma-
nipulating and developers will often have pushed it to the limit here.

On cart access The cart access is controlled through IO (usually the B7
command to 40001A8) and that is a good thing to watch as games are not
necessarily restricted to a single read function (indeed the Bink video format
from Rad game tools boasts the ability to handle �le reads in library in the
Bink video format sales patter) so watching a single function might not net you
what you want. This being said it is by no means a bad idea to watch a single
read function if you �nd one for a while to get a handle on things and owing to
the nature of the DS �lesystem it quite often can boil down to a small bunch of
functions attempting to �gure out enough pointers to �nd the given section in
the ROM itself (think in SDAT there might be a track within an SSEQ which
is within a section which will have a point to that section as part of the SDAT
�le which will have a pointer in the FAT section of the DS ROM which itself
will have a pointer listed in the header).

282

http://problemkaputt.de/gbatek.htm#dsmemorycontrolwram
http://problemkaputt.de/gbatek.htm#armcp15tightlycoupledmemorytcm
http://problemkaputt.de/gbatek.htm#dsiomaps
http://www.radgametools.com/binksdk.htm
http://www.radgametools.com/binksdk.htm

crystaltile2/no$gba ASM markup aka NEF Nintendo developed a kind
of markup format for their debuggers to use which no$gba (at the time the pre-
mier debugging grade emulator for the DS) and, eventually, crystaltile2 gained
support for. no$gba also supports a format it calls sym which at times almost
feels like an extension of nef.

The format allows you to assign names to memory locations (be they vari-
ables, names for IO or locations of functions/loops), declare sections to be data
(8,16 or 32 bits per entry for a given number of bytes), declare sections to be
just THUMB or ARM mode code and write comments and such similar to a
development assembly environment for although assembly is about getting right
down to the bare metal it is trivial and of no concern to the resulting speed of a
program to have a nice name for a memory location de�ned when programming,
used in the programming and replaced at time of assembly.

SRL/download play SRL �les are binaries output by debugging tools. For
the most part if they are seen in ROM images they are usually a developer left
extra, sometimes though they are there as or in download play components as
the main binary. Download play ROMs can and frequently do use a regular style
DS binary instead (usually called utility.bin), do note they usually use a lot of
compression and just about everything in a utility.bin �le will be compressed.

Binary compression It was mentioned back when compression was covered
but it should be noted the DS binaries and overlays can be compressed, some
Scene groups even compressed them if the original ROM had not compressed
it. The standard compression method used in DS binaries is a type of LZ
compression sometimes known as BLZ (backwards LZ) or more often DS binary
compression. Tools like crystaltile2 handle the decompression (although with
crystaltile2 you are advised to rip the �le normally and decompress with one of
the following tools if you plan to reinsert it, crystaltile2 has also been seen to say
there is compression where there is none) as will tools like Cue's compression

283

tools and DSdecmp. Equally the binary has to be decompressed to run so you
could always snatch it out of RAM, which was actually something many did do
before the format had tools made for it.

No binary encryption has been observed, though some called the binary
compression a type of encryption at times and obfuscation is seen on many
occasions. Equally there are a few scripting languages available for DS pro-
grammers so there may be some amount of just in time compilation and similar
things.

5.5.4 The GBA and DS compared

The following section will compare and contrast the GBA and DS as well as
elaborate further on the functions of each.

The GBA, unlike the GB/GBC predecessor, does not have BIOS level sine
tables (remember sine can be used to generate cosine and tangent values) but
the DS ARM7 does, even if developers will still tend to implement tables or
things at feature level, as SWI 1A.

Other than speed the di�erences between the processors are minimal as well
with the ARM9 (ARMv5) have an instruction to count leading zeros, another
branch code and the ability to set a breakpoint; the di�erent processors do
have access to a di�erent BIOS (and so a few di�erent commands) and di�erent
things (I/O and hardware) within the system though. This being said although
the DS has two processors as mentioned a few times the ARM9 is the thing that
does most of it for the purposes of commercial games (homebrew is a di�erent
matter and there are several examples of things using the ARM7 extensively)
and the ARM7 can for the most part be considered a slightly higher powered IO
and/or premade functions system. The speed bump has resulted in an increased
use of compression but most of it is fairly standard and with a �lesystem it is
not hard to work with.

Regarding SWI/BIOS functions most of the GBA sound functions are gone
on the DS and a few have di�erent mappings but generally speaking they are
the same.

IO is much the same save for the extra buttons, touchscreen and real time
clock (which was an optional on cart feature on the GBA) but the real change
is where the GBA BIOS functions for a lot of maths the DS has a maths copro-
cessor of sorts.

On the face of it the DS has a lot more main memory than the GBA (288
KBytes for the GBA and just over 4 megabytes by the time all is said and done
for the DS) but owing to the cart not being memory mapped this is not quite
as big a jump as it might seem when it comes to actually running things as the
ARM9 binary has to appear in memory and most of the time �les will have to
be copied from the cart rather than accessed directly as it was on the GBA. DS
cart access is also somewhat slower than the GBA and although a few games
have come o� worse for it as far as most day to day use is concerned it is more
than workable.

Interrupts are largely the same save for a few extras on the DS to handle the
newer hardware, they are however restricted by processor with the SPI (used
for DS saves and on card bonus functions like the pokewalker for some of the
later pokemon games) and wi� being taken care of by the ARM7.

284

DMA is much the same on the face of it although both processors can get
in on it e�ectively doubling the DMA channels. The ARM7 is much the same
as the GBA but the ARM9 one is expanded and has a few more modes to
handle new sources of data and work with the 3d as well as losing some of the
restrictions so it now has full memory access for all channels.

VRAM and graphics. Even with two screens taken into account the DS has
quite a bit more VRAM than the GBA although it is still not enough that you
can never run out/sections will be redundant however much like the general
system RAM the di�erence is not apparent as streaming directly from other
parts of the memory is quite possible; better yet other than the �nal rendered
image from the 3d engine nothing really touches the 2d VRAM memory that is
not graphics related. The di�erent engines in the DS are not the same and can
take a bit of time to �gure out to say nothing of the interplay between them
but for the most part they are fairly logical.

The 3d engine which was new to the DS is for the most part not memory
mapped/readable in memory although the registers to control a lot of it are
visible in ram in an emulator even if they are write only on original hardware;
the rendering and geometry functions are e�ectively given separate memory
areas and much like other parts of the system 3d is somewhat IO driven. It
is fairly weak as far as 3d hardware goes (as a testament to that unlike most
3d engines �xed point operations are the order of the day) leading a fair few
counts of precalculation and tricks on the part of the developer to get as much as
possible out of it although various levels of texturing, lighting, fog and shadows
are available.

5.5.5 On controls

There may well come a time where you wish to change the controls of a game
and people typically approach this from three main directions

1. Cheat/miss activator

2. Memory tweaking

3. Game editing

The activator is the favoured method of most cheat makers (although do be
careful not to confuse it with some onboard button activators a cheat engine
might a�ord you) with a great example being the Trauma Center �miss to re�ll
health�; here certain points in the game required the patient to be at a lower
health to trigger a further event so the in�nite health cheat had to become a
re�ll health when a �miss� happened.

Memory tweaking is probably the most common and works as the state of the
buttons on the GBA and DS are mapped to memory and so can be accessed; in
practice though many games will copy this value and operate upon that instead
which has the added bonus of lessening the e�ects of a button su�ering from
bounce failure (most buttons are just switches and might display open and closes
several times over the course of one press; if you have ever had a mouse start to
double click after being used for a while it was probably an example of it).

The GBA and DS at 4000130 hex for 16 bits has the standard GBA buttons
(no X and Y) for both consoles.

285

The DS has an additional 16 bits at 4000136 hex for the X,Y, screen closed,
�debug�, and whether the touchscreen is being pressed (no position data for this
as that is covered elsewhere).

It gets slightly more complex as there are interrupts in there) with on bit
for each of the various buttons.

Game editing is what most think of when they �rst hear of the term and
here there will be an interrupt or check set to read the control memory (be
it the mapped section or the copied version) and act accordingly. Here the
functionality of the game that does similar will be reworked. It should be noted
that if a game has the option to remap controls, even between a small selection of
premade maps, then it may be better to look at what goes with that abstraction.

DS Touch screen The DS has a touch screen in addition to the buttons.
Various hacks got done but as Nintendo pushed the touch screen quite hard on
developers (their �rst party o�erings even more so) quite a few games ended
up with touch screen controls even though the games themselves were arguably
better suited to button controls. Step in ROM hacking and a bunch of games had
their touch screen controls remapped to buttons with two of the most notable
being those in the Zelda series and Starfox, Crackerscrap.com guide to touch
screen to controls hacking has a nice worked example of various methods to this.
It should also be noted that the DS touch screen had something resembling a
conventional button to simply say the screen was being pressed in addition to
all the options a�orded by actual movement.

Looking back to the level editor in the N+ level editing section where
020E0840 was a touch screen driven location of the selection box it might have
done to instead select that as the intended destination of a controller hack.

Extra peripherals The GBA and DS carts both have GPIO (general purpose
IO) options built into them which have been used at various points to do various
things. On the DS this was mostly the GBA slot used for rumble, the taito game
pad and the guitar grip for guitar hero. Indeed the cheats made to allow buttons
to be used instead of the guitar grip saw the memory section that the guitar
pad button states were copied/debounced to be �ddled with.

Other hacks here included support for the the Taito paddle controller (orig-
inally intended for the Japanese version of Arkanoid) to other games like Mario
Kart DS.

5.5.6 Hooking

Some further discussion is available in the following section (see destructive vs
non destructive assembly editing). However even if you can understand the
disassembled code well enough to recreate the original source code then as far
as a lot of hacking is concerned that is only half the battle as you will probably
also want to edit and run the code. The process of interrupting the ROM and
changing what it does/running your own code requires you �rst to get a point
where you can tear it away from the original code, or, to use the proper term,
hook the code. There are three main classes of this

1. Instruction editing

2. Subverting functions

286

https://web.archive.org/web/20110604163902/http://crackerscrap.com/docs/sfchacktut.html
https://web.archive.org/web/20110604163902/http://crackerscrap.com/docs/sfchacktut.html

3. External hooking

Instruction editing was mentioned back in cheat making where if you found
the instruction that removes a life and NOPed it or changed it to an add or
something this would be it. It tends to get very complex to do this for anything
other than a basic hack unless you jump somewhere else, a practice which is
usually reserved for subverting functions.

The classic case of subverting functions would be in the case of adding a
variable width font to a game and where the game would usually calculate what
it needs to do you change the games default font handling code to your function
you buried somewhere else.

External hooking is probably the only method that actually warrants the
term hooking and has more in common with things like cheating devices. On
the DS at least there is the ARM7 which has comparatively little functionality
in commercial games but more or less full access to the memory so here you can
set an interrupt to run at some arbitrary time and do what needs to be done.
Similar things were done for the generic soft reset and sleep mode patches on
the GBA which set interrupts to run if a given button combination was pressed.

Tutorial on how to hook DS games using the ARM7

5.5.7 GBA cart as extra memory for DS hacks

As far as general ROM hacking is concerned this is still largely theoretical but
ask any ROM hacker if they would like the system to have an extra 32 megabytes
of memory that is low latency, high speed and addressable directly in memory
the answer is likely to be yes but it will never happen. The DS and DS lite
however feature the GBA slot which is 32 megabytes and all the above although
a select few games will use the header section and maybe save section to gain
extras, homebrew might use it and the web browser will also try to use it (in
these last two cases case it is actually read/write though) it still leaves a very
large amount of space available. Here the pointer in RAM that starts 02 could
in theory be changed to start 08 (or 09 for the upper 16 megabytes) and as
DMA restrictions were lifted on the DS anything that might have to go from
the 02XXXXXX memory section to somewhere else should not be troubled.

5.6 Non speci�c assembly discussion.

The following section covers various things that are often of great interest to
many of those working in assembly hacking but that do not necessarily �t in
other areas as well as a few concepts and techniques.

5.6.1 Language mod example

The game Advance Wars days of ruin/dark con�ict had the Japanese language
locked out despite it being present in the game. This would not be so bad but
it never actually saw a released in Japan on the DS (it appeared on the 3ds in
downloadable form in late 2013). However it was found that by holding part of
the RAM with a cheat the Japanese language �les would be used. Games can use
an assortment of methods here but in this case it mirrored the �rmware selection
method somewhat and is worth analysing further. The following is based on
this GBAtemp thread, uses a cheat from the GBAtemp cheat database and in

287

https://web.archive.org/web/20110810025458/http://crackerscrap.com/docs/dshooking.html
http://gbatemp.net/topic/254868-advance-wars-days-of-ruindark-conflict-language-mod/

many ways acts as more of a tutorial in how to port a cheat than anything to do
with language. This �rmware mirror concept is seen a lot in games and is useful
for those games which pull from �rmware but either you can not change (some
emulators) or you do not want to change all the time, here though it actually
unlocked hidden functionality.

22168F8C 000000?? is the cheat code where the ?? part is 00 through 05
to select the language you want. In this case corresponds to the �rmware order
(Japanese, English, French, German, Italian and Spanish).

The 2 at the start means do an 8 bit write and 2168F8C is probably better
written as 02168F8C which is to say 168F8C hex in the main ram section.

Now the cheat probably works by constantly writing the value to that point
in ram, something which might well be pointless after the game bootup.

Neither section is in the binary or an overlay for this game (it is just before
the overlay lowest in ram) and setting the DS to Japanese does not net Japanese
as the game language (it needing this cheat to get it). This means there is
something odd happening somewhere for it.

In the disassembly the location is mentioned several times around 020E31E0,
said location being the the �rst one to mention it. Running the game in
iDeaS and setting a run to option it �rst appears shortly after the opening
title/developer screen.

Here the ARM9 instruction as obtained from ndsdis
:020E31E0 E59F0004 ldr r0,[r15, #+0x4] ;r15+0x4=*(020e31ec)=#35032972(0x02168f8c)
Crystaltile2 can do it just as well though

288

Stripped to the more relevant parts
ldr r0, 0x02168f8c
Now there are a couple of schools of thought here
Go backwards and consider what got things to this stage (there seems to be

several branches to 020E31E0)
Go forwards and see what happens.
In this case forwards is probably more interesting and likely necessary as it

might well set pointers for the text sections and that there had to be a cheat to
select the language in the �rst place means it is probably better to go forwards
in this case. It turned out as expected that the value was checked very early on
so the game was reset and then allowed to run for a fraction of a second before
being paused. 020E31E0 was selected (the go command will get you there) and
run to cursor was used to get there.

From there the trace into command (f8) was used to advance instructions
one at a time

In short without a cheat it sees 01 there and more or less jumps immediately
to another area (it checks for French and Spanish as well) and with a cheat
00 appears before it goes o� on a massive tangent ending with it loading the
Japanese language version.

The obvious thing to do is change the load of that memory section (which

289

holds 01 in the case of English) to return 00 instead of 01. As the value is known
that mean ldr can be replaced with a mov or for the full instruction as arm-eabi
will want it

mov r0, #0x00
This assembles as
0000A0E3 (it will account for endianness but many emulators and disassem-

bly readouts will make it more human readable as indeed you can see in the
iDeaS debugging shot

From ndsts earlier we know this is the ARM9 and that it loads from 4000
hex in the ROM and Crystaltile2 says it is uncompressed.

0E31E0 was the location in the binary which means 0E71E0 is the location
in the ROM. If it was compressed or a lot of work had to be done then it
would just be a matter of extracting the �le (decompressing if necessary) before
injecting it back in as is done with any other �le.

There are of course multiple ways by which the game could have been
changed to achieve the same e�ect and even though it was a single instruc-
tion change in the end there may have been better methods as far as game
optimisation goes.

5.6.2 Non code in ASM

If you want a term to search for then this usually known as incbin (include
in binary). The DS binaries and overlays, especially in games without many
other �les, can contain code that is not executable, including graphics, text,
fonts, level data and more. Extracting this code is seldom a problem, indeed if
it is compressed it is almost certainly compressed with the binary speci�c com-
pression, compressed as part of the whole binary/overlay or something equally
obvious. However the getting it back in part may well prove more challenging.
There are various reasons for this, the most important of all being that the

290

binary has probably been assembled down to the instruction level to handle the
layout as it exists in the original ROM; even if it is something basic like text
your pointers for each line are probably now memory addresses as opposed to
some of the simpler methods the rest of the DS enjoys.

This is not limited to any one console either and although programmers are
encouraged to keep their data and executable code separate as has been covered
elsewhere and should be kept in mind at all times when hacking is programmers
are people too and are no stranger to the quick and easy method when �it will
do�.

5.6.3 Destructive vs non destructive assembly editing

In the simplest sense most assembly hacks are in some way destructive as they
edit the original ROM but that is not a useful distinction so it is not often
made, and if it is it is usually for when dealing with secured systems that check
binaries during runtime.

In an ideal world you would just be able to add your function to the end of
the binary and have it work after a branch but the world is not ideal and even
if it was if you are replacing a function or editing just a handful of opcodes it
might make less sense to do that so to this end we have destructive assembly
editing where things get replaced from the original ROM. The crude method is
to overwrite and accept the consequences which many have done to test things
to no ill e�ect and even used in �production� hacks but beyond that DS binaries
might contain all sorts of potentially viable space like those in wi� and other
error messages; assuming you have the uncompressed version do a string search
for ASCII or unicode data and you will quite often end up with a large number
of bytes given over to the error messages which remember is loaded at all times
and even if you do not want to repoint the text values wi� error messages rarely
come up so it can be a safe place to branch to and inject some code or otherwise
use for calculations/values.

If you are not up for that though there is the �proper� route of branching,
binary extension and optimisation however on the DS once you add in binary
overlays and other aspects of memory mapping this can get very tricky indeed
as the memory on most DS games is aggressively managed both by design and
because it has to be (4 megabytes give or take a bit for TCM and extras for
video and such can do some amazing things but it is not enough to sustain a
slightly sloppier style of coding that cares not about memory leaks and freeing
unused information).

DEADBEEF padding and �nding free memory A technique which is
common enough outside DS hacking, the idea is you �ood the RAM (or save
�le in some occasions) with a series of values unlikely to come up in everyday
code and DEADBEEF is quite valid hexadecimal so it is often chosen (some
older computers even initialised their RAM to it and other machines use similar
plays on words for various things). After you have run the ROM for as long as
you need anything with DEADBEEF in the RAM is possibly fair game to put
something in.

It is probably not going to be that hard to make your own (you are making
something do a simple task once early in the boot sequence) but DSATM 4.3.4

291

http://filetrip.net/nds-downloads/utilities/download-dsatm-434-f27609.html

should have the option to add it in (it was dropped from later versions of the
program which you can get from the same link).

This technique is more useful for code that needs to run once and run early
as there are all sorts of edge conditions that could have to be accounted for but
with the general lack of run time memory management outside of what has been
programmed into the game expect things to cause trouble in the long run.

There is also a modi�ed build of desmume that will attempt to track memory
as it is used and will report which areas have not been used by given points.

Some games have been seen to initialise/�ood �ll the RAM and possibly
expect certain things to be as such which can be broken if the RAM now reads
DEADBEEF. Related problems have been seen when trimming GBA and DS
ROMs down to the last 00 which is might well have expected as an end of �le
token or something similar.

No GBA or DS game has ever been observed to do it but reading �unini-
tialised� RAM is considered a reasonably high quality way of getting random
numbers to use as a seed for some encryption or something, such a thing is
technically possible though. With the hardware being �xed there are probably
better methods using the sound hardware not to mention most games are un-
likely to need security grade random numbers so a psuedorandom algorithm or
even lookup table is quite suitable.

5.6.4 Polymorphic and dynamic code

There are various methods available to programmers to change code and use
existing code to do things using information gathered at runtime and these can
trouble assembly hacking.

Polymorphic Usually a term that comes up in the discussion of modern virus
programming and signature analysis it is worth being mentioned here.

The idea is that if you can read and write the binary location in memory you
can change how it runs at runtime but with a few exceptions this is rarely seen
in commercial games for the likes of the GBA and DS; indeed the anti piracy
protection for commercial games on the DS often revolves around checking the
binary has not changed which prevents this method from being that useful
(any potential speedboosts and memory savings usually being negated by the
checks or having to work around the checks). On the �ip side though some
of the interpreted languages and emulators using techniques like just in time
compilation and dynamic recompilation can be said to use this although that
usually devolves into a semantic debate.

A basic example of this being used in a ROM hack could be something like
hardpatching a cheat to the ROM and allowing a trainer to change it before you
run the ROM by use of a menu. Say you have found the location in the memory
of the lives and now found the instruction that removes them and as has been
seen it is possible for cheat makers quite often patch the binary or overlays in
memory with the payload being a changed instructions. True polymorphic code
would do this multiple times at runtime and keep adapting the code most likely
according to a set group of patterns/techniques but not necessarily25.

25Another for the list of things considered outside the scope of this document would be evo-
lutionary algorithms and evolutionary programming where groups of algorithms are collected
and tweaked slightly in a random manner before being tested and the best of those being

292

http://gbatemp.net/threads/unofficial-desmume-build-unused-memory-finder-tool.349332/

Some hackers have in the past swapped out portions of the actual game code,
jumped to it and had it run before swapping out the changed portion back for
the original code and jumping to wherever things need to be and others have
compressed the code that comes after their code and expanded that back after
their code is done running deleting their code in the process and allowing the
game to run as normal. Both of these are quite an advanced techniques though
and not terribly useful if you can otherwise �nd some RAM or some unused
part of the binary to use instead..

Although the binary itself might be protected other parts of memory are not
so �lucky� and things can happen there with one of the most common examples
would be the palette used in 2d imagery; 2d animation was already covered but
a method there comes in that the palette can be updated in real time to create
the impression of changing colours. A great example of this is the rainbow
blocks in Mr Driller 2 on the GBA and you can see the palette being changed in
just about every version of VBA as long as you are in a level and if you prefer
a DS example there is a nightmare sequence very early in the second game that
does a similar thing to a background.

Heading into the future although it is a valuable technique some of the pro-
tection systems do a lot to prevent it from working with consoles like the 360
even gaining encrypted memory thus preventing simple manipulation (some of
the hacks actually added an area of unencrypted memory to allow emulators
that use related techniques to work) and home computers often now a memory
protection technique known on Windows as ASLR (address space layout ran-
domisation) that randomises the memory layout in an attempt to avoid having
data at a given location; just quickly every windows program is compiled to
run in a certain memory location but Windows itself hides and changes the
commands into what they need to be which is how multiple programs work at
once on Windows. On the other hand there are languages that get classed as
re�ective languages that do have such abilities as something of a core function
but this again risks returning to the semantic debate.

Dynamic (calculated values) It could be said most pointers on the DS are
a variation on this and although it is not strictly a type of polymorphic code
it is related to it and a lot more common than by virtue of it being used in
calculated pointers and similar code; it is quite common in C type languages
but if you recall back to the cheat to assembly ports and the instructions that
would add things to values later used as memory locations. Such things are also
the reason it is not often advised to even try changing locations of things in
RAM or in ROM for things like the GBA even if you are willing to undertake
the near Herculean task of repointing everything. It is quite often seen in games
programmed largely in assembly or plain C which is to say just about everything
older than a PS1.

Here if you know the memory location of something the next thing might

selected and randomly tweaked again and again and again for thousands of rounds in a pro-
cess that often creates far faster algorithms than humans can make. This area is a hot topic
for research right now and has widespread implications for all �elds ranging from processor
design where it is already being used to and even game design (we already have procedural
generation and a handful of things using this in a token manner but this is the next step). A
nice video on the subject can be seen in the 28c3 presentation entitled �Automatic Algorithm
Invention with a GPU�.

293

http://www.youtube.com/watch?v=tQvFZVlM2Gk

well be a known/�xed distance away so rather than fetching a new pointer
from memory or worse the cart and incurring a speed penalty you could just
add this �xed distance to a value already in memory and then direct it to
a new location with this new value. Related to this is the idea of dodging
having to call a function and spend several cycles setting up for it (even if it
is as simple function everything will have to be pushed, new values written,
the function jumped to and done, values returned and everything popped back
before returning (although the last few things can be swapped around a bit).

Cheat makers quite often face a similar problem with pointer codes where
a game will store a value in memory but instead of just having a plain value
somewhere written directly it instead has a pointer to it which can change and
the game calculates where to write the value at a given point based on this
pointer which may or may not be static throughout a given run of the game.
If it is not static this prevents the basic alter and check cheat �nding method
as well as always write unless the pointer is accounted for and such things have
been seen in areas not generally covered exclusively by cheats as well.

5.6.5 Slowdown and speedup

Occasionally it is useful to slow a game down or speed it up and there are several
ways to do this but if you are on an emulator just use the inbuilt features as
they will be far more stable and easy to do than these hacks.

Slowdown Slowdown can be caused in one of several ways
The way most DS �ash carts and programs like DSATM use aims to interrupt

and then �ood the CPU with useless instructions (maybe a selectable amount
of them) that mean it can not do everything it normally would and will slow
down the game as a result (and might well crash a game not coded to take it).

CPU halt commands can also be used although this is often even harder.
Methods similar to those some of those seen in speeding up but made to

slow things instead.

Speeding up Typically this is seen where games have elaborate movement
sequences (or just movement sequences) which might not sit well with someone
wanting a quick �re game with pokemon and similar titles, RPGs and �tactics�
games being common targets for such hacks. Simple emulator style speed op-
tions are not that doable in hardware, though you can try. You typically employ
one of three methods

1. Animation based tweaks. If a game will wait for an animation to happen
you force it towards the end state faster � if it waits for an animation to
happen over ten frames you have it happen over one, either by changing
the frame count or by changing it so it reaches the end state faster (the
animals came on two by two but if instead it was four by four it would be
faster). Works for 2d and 3d animations. Hopefully said animations are
not a loading or calculation mask. You need not stop there; many years
ago I played pokemon blue, it had a little experience sharing device which
I took it o� in the end because the thing made me press A a bunch of
times at the end of battles. Should you eliminate that then you gain some
more speed/less annoyance.

294

(a) Crank it to 11. If a game has a setting for text speed and such then
it might have an option to go to even faster. For instance if a game
has a text speed variable it might use said variable to speed things
along and might not be a simple �ag. Say then if the value is 90 but
you have the full 8 bits to play with you might gain some more speed.
You could also �gure out how it changes the speed and change that
instead.

2. Vblank loops. Probably the easiest to attack but gains the most fallout.
Screen updates tend to be tied to vblanks and that also accounts for
various pieces of game logic that might happen. You disable some of the
vblank loops and have them happen all the time (or some more frequent
event) instead and you probably get some garbage on the screen and some
speed increases too. Traditionally this was all tied to the clock speed
of a device which in turn went for the screen it went on, hence bad PAL
conversions, di�erent clock speeds between regions and even old dos games
being crazy fast on modern machines. Newer devices often have a separate
timer, hence PC games working just as �ne on an old P4 as they do on an
overclocked i7, assuming the P4 can output the required number of frames
for the screen, or indeed the same on the PSP whether it was underclocked
or clocked faster.

3. Full blown hack. If you don't have anything nice to abuse like in 1) and
1a) you fully analyse the game code and make it happen, �rst step there
though is to see if you can force something like 1) or 1a) to happen if
there is a bounds check or upper limit put in place for whatever reason.
Actually optimising games is not really going to be covered but people
do it and it does increase speed, sometimes increase stability and increase
battery life. As time goes on and higher level languages get used there
is an increasingly large amount either actually redundant or potentially
redundant code as well.

Some have attempted to disable vblank/vsync or prevent it from waiting to
do things there which also speeds things up but often at the cost of corrupt
graphics.

5.6.6 Cryptography (encryption, checksums and signatures)

Although you were already warned this document would probably ruin your
ability to enjoy �lms, TV shows and such that try to portray computers this
section carries another warning as it is more dangerous than almost any of the
others for that.

For longer than there has been computers or even the maths to describe it
there have been people which have wanted to verify information and/or have it
only able to be read by those it is intended for. Modern consoles which have
designs on being something of a single purpose device with no user interaction
beyond the parameters of the game and any menu the console has then have
made extensive use of it. Although with the exception of save editing which is
covered in the next section this is usually taken care of by the console itself (and
later on hopefully any tools you used to pull apart and rebuild the �lesystem,
the hacks to or emulators of the system).

295

http://www.dwedit.org/dwedit_board/viewtopic.php?id=480
http://www.dwedit.org/dwedit_board/viewtopic.php?id=480

Although in practice cryptography includes aspects of security as a whole and
is also concerned with time taken to crack them as well as the proper/e�ective
implementations of cryptographic systems it will have to be considered some-
what outside the scope of this document. If you do want to read further though
two books by Bruce Schneier known as Applied Cryptography and a more re-
cent book Liars and Outliers are starting points and reference materials for most
that use the �eld.

Back on topic there are three main areas of interest.

1. Checksums/Hashes - small numbers that are made using mathematical
functions to describe the contents of a message/�le.

2. Encryption - using mathematical functions to prevent those without the
relevant information (keys) from reading the message/�le

3. Signatures - using mathematical functions to generate a checksum but us-
ing a key so only the person possessing the key can generate the signature.

You have just seen some of the terms/jargon but more should be described
before going on

Message - the term used to describe the data being checksummed, encrypted
or signed

Plaintext - a synonym for the message
Ciphertext - a synonym for the encrypted message
Hash - a synonym for checksum
Plain text - the original unencrypted message
Key - simply a number used to do/as part of the encryption or signing

process
Symmetric key - using the same key to encode and decode
Asymmetric key - using two or more keys to allow some groups to read and

others to encrypt but one in possession of just one key should not be able to do
both.

Private key - depending upon what you are doing the key you keep locked
down

Public key - depending upon what you are doing the key you give to anybody
that wants it

Collision - when two di�erent messages produce a �le with the same signa-
ture/checksum

Rainbow table - a list of all the hashes for every single message up to a
certain length

Brute force - trying every possible key or every change to a �le to get it to
match the original. For a modern well implemented system this is not considered
viable

Hole - the term for when an encryption or signing method has a �aw that
allows people to bypass it (usually in a time shorter than brute force)

Security by obscurity - the process of trying to ensure security by using a
custom encryption/hashing/signing process which is a method that frequently
fails spectacularly

296

http://www.schneier.com/book-applied.html
http://www.schneier.com/book-lo.html

Checksums/Hashes There are two simple examples of this that will be cov-
ered in an attempt to explain this.

Parity - in short if you took the �le as a whole or a collection of parts is each
of those odd or even.

Bytesums - if you added up the contents of each byte a number would be
produced that would vary if one of the bytes that made it up was changed.

Here are the requirements for checksums/hashes used for security (if you hash
for searching purposes some of these change in a fairly obvious way), sometimes
these are combined into more broad requirements but the ideas remain the same

� Each message must produce a unique hash, aka messages must not produce
the same hash

� Each hash must be equally likely, aka each bit must have a 50/50 chance
of being 1

� Each hash must be unpredictable, aka each minor change to a message
must produce a big change in the resulting hash

� Each hash function must make the same hash for the same message (no
randomness in the output)

Salting This is the act of introducing another piece of data to the data
to be hashed. In the better cases something unique to that piece of data but
in lesser cases something common to all the hashes to be made for a system.
It is mainly used where password databases are kept; storing raw passwords is
risky as they might be exposed in a leak and if you are given a password then
a hash of said password can also be used to verify it (remember each message
should produce a unique but unpredictable hash). It came about as rainbow
tables, tables which list hashes for every combination of values (occasionally just
dictionary words or a given character set) up to a certain length, became viable
for even general use in the early 2000s as a result of increasing disc space. By
changing the data being hashed to something else you stop basic rainbow tables
from being useful, however as they are easily generated it is then desirable for
a unique/di�erent salt for each hash of a password.

Encryption As mentioned this is the process by which data or, to use the
standard parlance, the message is made so that it can not be read by someone
without the required key values. As far as the GBA and DS are concerned
encryption is not in common use but other consoles have been seen to use it and
on the PC games and other programs use it extensively so it is worth knowing
about

There are two main classes of encryption known as

� Public/Asymmetric key - in the basic form one key is used to encrypt and
another which is mathematically related is used to decrypt.

� Private/Symmetric key - in the basic form the same key is used to encode
and decode.

There are ways to blur the lines and the terms do not always match up precisely
and it is also possible to combine the two; commonly your bank will use public

297

key to allow you to send a key to them to then do private key for the rest of
the transaction and you can nest encryptions if you want. Private/Symmetric
key is in many ways inferior but as it is less computationally expensive to do
and when done right it works well it has stuck around since the invention of
asymmetric encryption.

Symmetric XOR
Going back to the binary XOR example
Message
0110 1100
Key
1110 0001
XORing the two
1000 1101

Asymmetric The basis of asymmetric cryptography is the idea of one
way/trapdoor functions.

Typically the functions employed for encryption are that it is hard to factor
numbers (with cryptography techniques being available for prime numbers as a
result) and a related problem with ellipses (leading to elliptical encryption).

Examples of implementations are usually given as part of a programming
course and are quite lengthy and will do little here so it will not be covered
beyond the most basic

Prime numbers
181733 - what are the factors?
The answer is 691 multiplied 263 but other than being told or trying every

possible prime number (which remember there is no known pattern in) you can
not do it and there is also the chance the number is not a prime number but
to basic checks looks like one (only by checking every viable number can you
tell but there are weak tests called primality tests that can indicate a prime
number).

RSA is a popular prime number based encryption method which you can
read about Berkley's website

Basic attacks Some of the methods you will learned to �nd text have their
roots in attacks on encryption, and indeed technically speaking text encodings
are a type of substitution cipher which is a technique which has been in use for
thousands of years. Being so well known by themselves these attacks are not
typically of great use but as many methods derive from basic principles they
are worth knowing of.

Known plaintext The simplest form of this is for XOR and was seen
on the 3ds save encryption. Here the last bytes of the save chip which are
typically larger than the save they contain was padded with 00 and XORing
your password with 00 leaves the password as plain text.. Even if it was not 00
just knowing the original text (or enough of it) allows you to get the XOR key
by simply doing the XOR.

298

http://mathcircle.berkeley.edu/BMC3/rsa/node4.html

Chosen plaintext Again if you go back to XOR if you can choose a �le
of all 00 (this also works on many more advanced algorithms at various levels)
and get the program to encrypt it you will have valuable information about the
key if not the key itself. If you use an action replay cheat to change a value in
memory and then let the game make the save thus not having to work out how
a game hashes the save you are doing a variation on this.

Key recovery This is more of an assembly level thing but most of the
time developers will not manage the key well and leave it in memory or leave
it in an obvious place at a given point in time thus allowing you to extract it.
Equally if you are dealing with a PC or an emulator then much of encryption is
merely designed to frustrate those basic skills or those without much patience
so you can watch what happens and �gure things out here if you want.

Oracle abuse The idea of an oracle is actually a speci�c thing within
cryptography but in loose terms it can be summarised as a black box of unknown
mechanism that assists in cryptography related problems and if you have/gain
unfettered access to the oracle you can do some interesting things. The PSP
saw a related attack with the game decryption program that allowed decrypting
of game �les for later �rmwares (the PSP allowed for new game encryption keys
to be introduced), several other late stage hacks in consoles use it as a core
mechanic rather than hack things more extensively (although in some cases this
may be viewed as exploiting a di�erent bug), compression workarounds have
been made where rather than �gure out the compression form then if you just
wait for it to appear in uncompressed form... and if you ever inject content
into the ram and have the save created (and hashed) using the content you just
injected that would be another example, or alternatively if you disabled the
hash check on a save knowing that it would eventually redo the hash properly
for you that would be another.

Example of known and chosen plaintext For an example of why using
a long run of 0 with XOR is a bad idea if you want security and a further example
of known plaintext

Message of all 0
0000 0000
Key
0110 1110
XOR
0110 1110
Message longer than key but padded with 0
1101 1111 0000 0000
Key
0110 1110
XOR
1011 0001 0110 1110
Known/chosen plaintext
So you have not padded with 0 but you have padded with a repeated value

of 7h (0111)
Message

299

0111 1111 1101 0111 0111 0111
Key
0101
XOR
0010 0000 0000 0010 0010 0010
Unknown message (but with a known or suspected portion)
XXXX XXXX XXXX 0111 0111 0111
Reversing the XOR
0111 gives 0010
This means
To get 0 from 0 XOR has to be 0
To get 0 from 1 XOR has to be 1
To get 1 from 1 XOR has to be 0
To get 0 from 1 XOR has to be 1
0101 is the key.

Signatures In brief a signature is just like a hash in that it produces a number
that represents the data signed but it uses cryptography (typically asymmetric
but not always) to mean only someone with the keys can create and/or check the
signature. Any encryption algorithm can be turned into a signature although
in many cases you will want to read up and make sure it is a wise idea lest you
end up like the original xbox (PDF version of the article).

Many times though making a signature for a large �le is less than ideal for
various reasons, the big two being speed and the possibility of key leakage, so the
�le will instead be hashed and the list of hashes (which remember should change
if the �le does) are then treated as a message which can be signed; changing the
�le changes the resulting hash which makes the signature, which is in essence a
hash itself, incorrect and thus things can be treated appropriately.

A popular implementation of the signed list of hashes/checksums goes by
the name HMAC.

Checks and workarounds Hashes and signatures are great but if you fail
to verify them properly they are useless. Several consoles have failed to verify
them properly over the years, most notably in the Wii which used a text compare
function and thus could be made to only needed the �rst byte to match (a trivial
thing to �brute force�) and early PSP which checked one folder and launched
another if you put a $ in front of the name. A related failure can be seen
in the xbox 360 DVD attacks (the basis for �ashed DVD drives on the 360)
where the disc is veri�ed solely by the drive �rmware, said drive �rmware can
be overwritten (no bad thing per se as it eases manufacturing) but the original
console is also unable to check it properly.

Related to this are three concepts which are often used and even used in
consoles, although not so much for anything ROM hacking is usually concerned
with.

� Blacklist - if something is detected as being on a blacklist it will be pre-
vented from being run or something similar.

� Whitelist - unless something is on a whitelist it will be prevented from
running, or at the very least heavily restricted depending upon your setup.

300

http://web.archive.org/web/20090212084156/http://xbox-linux.org/wiki/17_Mistakes_Microsoft_Made_in_the_Xbox_Security_System
http://events.ccc.de/congress/2005/fahrplan/attachments/591-paper_xbox.pdf

� Heuristics/greylist - Here certain functionality is probed for and if it is
found warnings or limits will be put in place. Greylist is more commonly
used when discussing email where it refers to the technique of sending a
reply to the originating email asking did you really send this.

Consoles will often blacklist earlier versions of the �rmware to stop things being
downgraded and the Wii saw a couple of devices/discs from Datel aimed at
the Gamecube blacklisted as they allowed various things to be done to allow
gamecube homebrew on the Wii.

Whitelists have been seen in consoles when signatures get broken (like the
PS3) or for legacy support where there is not the option to upgrade old code
(remember the term is called ROM for a reason) but the desire to run the old
code is still there. The DSi and 3DS have seen this where all the old DS games
were put on a whitelist but not any uno�cial code and all newer DS games
carried additional signatures26.

5.6.7 Multiplayer and the failure of Nintendo's online DS security.

Networking and all that goes into a modern multiplayer game is a bit outside
the scope of this. However the demise of the DS (and Wii) online game services
provided an interesting example of something that is technically editing a binary
but in practice involved very little assembly.

As the DS at least pretended to be a partway modern computing device and
sported TCP-IP it also tried its hand at security when doing online things. Part
of this was a secure handshake that it did with Nintendo's servers. Theoretically
there were ways by which this could have been subverted, however in practice it
was observed that by changing the web addresses hardcoded in binaries/overlays
found in DS games from https:// to http:// (padding the end of the address back
out to make it �t) it would happily broadcast in plaintext instead. Nintendo
could have also done some server side checks for it but they had not.

With it, and in the short period before the shutdown came, the save Nintendo
wi� project was able to observe the protocol and reverse engineer it far enough
that many games are still playable on custom servers. Most games were not
as extensive as something like World of Warcraft, which has full databases and
servers doing lots of computation beyond that, but if a hacker is able to replicate
the functionality of your hidden servers then it is something of a failure in
network security.

Earlier failures in online security usually came from people being able to run
their own code on carts, and modi�ed versions of existing games, and with it
cheat to the point that games were broken. Traditional anti cheat measures
might have helped but in general security you should always assume those ac-
cessing your services are compromised/hostile and do what you can within your
own servers.

5.6.8 Save editing

Although games could just take a snapshot of their memory at the time and
restore it later (indeed this is all save states are) most of the time the key values

26Although these signatures were not checked entirely properly with the overlays (recall they
are sections of code that can be dropped in place well after boot time to provide additional
functions). Hackmii has a nice writeup of the events here.

301

http://gbatemp.net/threads/save-nintendo-wifi-a-project-to-save-online-servers-for-ds-and-wii-games.362717/
http://gbatemp.net/threads/save-nintendo-wifi-a-project-to-save-online-servers-for-ds-and-wii-games.362717/
http://hackmii.com/2010/02/lawsuit-coming-in-3-2-1/

that make up the game at that point (characters, names, levels, experience,
states, inventory, location, point in the story....) are stored in a writeable section
of memory somewhere using some custom format. Either as a type of cheating
or for hacking purposes (both ROM hacking and general hacking27) it can be
useful to edit these �les.

Figuring out how this format works usually involves a combination of a
method like searching for cheats (change one small thing and see what changed
in the �le format), actual cheats (makes changing the resulting values much
easier), simple analysis (it is certainly not sure to gain you anything but there
is nothing bad about looking at the �le in a hex editor and seeing if you can
�gure something out based upon what you expect should be in there), level/stat
editing (corruption and logical analysis) and assembly (seeing how it stores and
restores the data from the save �le into RAM and relating that to what you
know). Usually the formats are quite logical and this can work to your advantage
for much like most relative text systems simply bumping the value of an item
by 1 will often select the next in the list and allow you to �ll out the entire list
quite quickly possibly including some items, locations and such the developers
did not intend to have available in general use.

On top of this games will frequently do some checks on the �le both in the
form of a basic checksum or maybe a signature of some sort (rarely and quite
often something relatively custom/nonstandard in the case of the GBA and
DS) and in a manner similar to complex cheats with values mirrored to other
locations in various ways, pointers used to change locations, values manipulated
before storage and such. Finding the checksum section will usually come as
part of the initial editing (remember checksums should change for even the
smallest change in the data they cover) although �nding out the method can be
troublesome so alternatively you can hack the game to ignore the checksum as
it tends only to be checked once right at the start of the loading procedure or
some similar opportune point.

More modern systems and especially those with online components (Mi-
crosoft is well known to ban people from Xbox live and revoke their save mak-
ing keys should they manipulate their save games and the Wii has seen similar
measures in some cases) and in some cases even things like pokemon will have
detection based not on cryptography type methods but on impossibility; a value
might well be 16 bits but if the game under the best possible circumstances can
only see a value of a stat reach the low thousands (as opposed to the 65535 that
a 16 bit value a�ords) and someone has exceeded that it can be detected.

It should be noted some consoles like the Wii and 360 have developers store
�les in a universal container format for that console and then allow developers
to stick their custom format in that.

Saves in di�erent regions Saves are largely a custom format and although
most localisation teams do not really touch much in the source code as far
as games running goes it is quite nice to have saves work between di�erent
regions. In many cases you can use the saves directly with any region or version
but occasionally there can be problems with the most common although not

27More than a few hacks for a great many consoles have used errors in save handling and
the handling of other ostensibly user editable content to launch and/or the saves themselves
to contain the payload of the hack.

302

http://wiibrew.org/wiki/Savegame_Files
http://free60.org/STFS

so troubling problem being where a Japanese game might have used a 16 bit
encoding and the European or North American localisation will more likely use
an 8 bit one or simply not include all the glyphs from the original encoding
making the names of characters display oddly.

More troubling is that game saves are usually a fairly speci�c a�air with
locations hard coded so if a variable is changed in length between versions every
subsequent variable will be out by a given amount and things will go sideways
and if multiple variables are changed in length it can get even worse; here is
might even be better to build a full save editor or collection of cheats instead of
��xing� the save.

5.6.9 Interpreted languages

Once exclusively the domain of homebrew a few commercial games have been
seen using interpreted programming languages of which the most notable was
the puzzle quest series (in this case a version of lua) and other times games have
used scripting languages after a fashion for their text and general operations
(recall the wii scripting example and wizard of oz game mentioned back in text
editing) to say nothing of the DS sound format SSEQ being a limited type of
scripting language. Trying to interpret these (that is to say the actual game
code as opposed to the interpreter itself) as ASM is not going to happen easily
and much like using a hex editor for everything it is not a terribly good idea
but more importantly many of these interpreted languages are built in a way
that allows for decompilation and/or simple editing using the language itself.
Equally few games are programmed in ASM any more and most will not have
any or at worst only a tiny fraction of ASM (it is a technique called inline
assembly) so being able to recognise a given or standard C function in assembly
can make reverse engineering that much easier.

5.6.10 Game AI, game logic and game theory

The mathematical discipline known as game theory is a fascinating subject and
one well worth reading up on (some basic coverage will be here but it goes far
more in depth) as it informs quite a bit of ROM hacking owing to it speaking
to the nature of games. As one of the favourite things for people to do in ROM
hacking is to twist the original concept into something quite di�erent, or indeed
remove the ability to exploit certain techniques that might be seen as game
breaking, then it can pay to know the terms used to describe what has been
done (�in doing this I turn the game back into a perfect information game�).

Game AI on the other hand follows on from stats and level editing but in
general the idea behind game AI is to provide an opponent to a human player
that, in the con�nes of the game at least, is relatively challenging despite no
computer being able to think at the level (and more importantly in a similar
manner) to humans. Games in general exist almost solely in the realms of using
a limited set of rules/con�nes to attempt to produce a compelling experience
for the player and this applies even more so for computer based games; think
how much of ROM hacking and cheat making aim to change how the rules work.
Layered onto this is various amounts of psychology but even small facets of this
are the subject of far longer documents than this one, to this end and to keep
it more applicable to ROM hacking the discussion will be limited.

303

Quite often would be hackers are wanting to change the stats of a collectable
card game and quite often doing as such renders the in game AI almost useless.
To understand why it is useful to analyse the principles of a card game. Going
for one of the simplest card games known as Top Trumps where cards featuring
various related items (characters, vehicles, animals, locations and much more)
would be pitted against each other based on a certain stat and win accordingly
(although here the standard rules will be ejected so as to create some room for
examples) and comparing it loosely (a kind of proto game version for the most
part) to some of the card game types popularised by the likes of Wizards of the
Coast. Speaking of Wizards of the Coast then if the following section and the
related ones interest you then they have a nice writeup of their AI for the Xbox
Live Arcade version of their Magic the Gathering card game, you can read it
here.

Now the cost for playing is zero (no �mana� or monster sacri�ce)
There is no option to negate a play (no �interrupts� or traps)
There is no persistence of a card (once played a trump is removed from the

game vs the potential for a persistent threat.)
For the sake of this example alternating turns will happen (no skipped moves

and no winner stays on)
A fairly simple game but one some thought needs to go into to make a good

AI.
Questions that need answering is does the AI know all the cards in the deck

and calculate from there or use a probability estimation? How does the game
draw new cards (7 and new set when they are over or 20 and 20 for each to be
available to play from the start?), are the cards an equal spread (being based
on real life items it is not likely but it could be made to be so), how is the game
played round by round (put down a card and have to beat it or refuse and lose
a random card)? Is just one stat mentioned for play or are all the stats up for
the chance to lose?

The win condition of a given round is probably fairly obvious but the good
player will not waste a card much higher than the other and also will not want
to waste a card if the other stats are good. In practice when designing a game
such things might not be considered in favour of a more human approach from
the programmer or indeed something very basic; if it looks like enemies in a bad
FPS title just run at you and shoot it is because they probably do just that.

Comparing this to the proto card game there are far more possibilities of
play (the mathematical term being known as the problem space) than even the
largest supercomputer could account for28 , however there are things that can be
done to approximate a good game which will boil down to two main categories.

1. Game approximation

2. Game restriction

28A secondary term that arises when discussing this and the further subject of mechanism
design is emergent gameplay where a few simple concepts combine to create a good game that
does not need several hundred rules. A large problem space is relatively easy to create but
emergent gameplay is closer to an art type subject where the aim is to create a good game than
it is to game theory which is usually more focused on mathematics and modelling a situation.
For a slightly less theoretical example then consider that the Metroid and Castlevania engines
by themselves do not dictate that backtracking for various items/perks is necessary but the
level designers add in such ideas.

304

http://archive.wizards.com/Magic/Magazine/Article.aspx?x=mtg/daily/feature/44

Approximation says things like �most of the time casting cost is X and the
necessity to do things varies with game time according to a formula, therefore
try to allow for this�.

Game restriction relies upon restricting the potential amount of options
available to reduce it to a more calculable level. Related to approximation
a developer may also provide the game AI with a reasonably loose advantage
over the player either in the actual AI or design of the opponent, such things
usually being taken care of/�ne tuned in playtesting. Restrictions include lim-
ited customisation of a deck and limited amounts of cards versus the real world,
quite often limiting the options for certain play techniques in the process. Re-
lated to both the AI can be given a measure of superhuman ability (for instance
it might know the cards you have or at least some data on them) which would
break the game if a human had the ability but when properly tuned it can make
the AI work.

All of this provides the option to somewhat intuitively design an AI that
does the job. However with a bit of analysis using the ideas presented by game
theory and mechanism design you can re�ne your AI and play mechanics quite
considerably; techniques for certain games, most notably the likes of backgam-
mon and draughts/checkers, have almost served to break those games as well
and create AI most humans have little chance of beating.

Game theory It has been mentioned and partially covered several times now
but some more depth is warranted. The basic idea is what if complex actions
and strategies could be formulated, understood and predicted using fairly simple
maths (it does get complex later) as a basis for it? It turns out it really can be
represented as some fairly basic mathematical equations, however before that
there needs to be a short discussion of some ideas and terms, many of them
describe somewhat simpli�ed concepts and what levels they apply at can vary
with how you analyse things and where you start analysing things

� Perfect information - everything will be known about what has gone before

� Imperfect information - not everything that has gone before will be known
about. Card games that you can fold in without having to show cards are
an example, as are games that use fog of war.

� Prisoner's dilemma - a situation where two potential opponents have the
chance to gain at the cost of the other or cooperate to both win but not
win as big. Important whether it is continuous with chances for more
rounds or distinct. Related to this is the game of chicken which has a
worst case scenario if both players attempting to win will cause the worst
outcome.

� Nash equilibrium - combinations of strategies on the parts of multiple
players can result in a given payo� but any one player changing strategy
will cause a net loss in the ability to accrue points to both or that one
player.

� Complete information - di�erent to the perfect and imperfect above (it
is possible to have a complete imperfect game and an incomplete perfect
information game) it refers to the idea that the goals and strategies are

305

able to be known by all players. Risk when hidden goals are in play is
incomplete but Risk when world domination is the goal is complete (albeit
imperfect if you account for the hidden cards).

� Metagame - a game within a larger game. RPG games where the objective
is to move from one town to the next to continue the story will often have
battles which use entirely di�erent mechanics to town part of the game.
Sticking with RPGs they have long had minigames using certain actions
which are radically di�erent to normal play and maybe even at odds with
the previously established game mechanics that have to be performed to
progress.

� Utility - the �points� a player seeks in a game. It is quite possible for
two players to seek di�erent utility in the same game, whether by choice
(arguably this is what �grie�ng� is) or by design, and this follows on from
complete information with regards to goals. Again mission based Risk is
a good example of this.

� Symmetric - strategies available to each player are the same. Advance
Wars without CO bonuses (on an equal map) is symmetric but with CO
bonuses it a�ords a whole di�erent set of strategies.

� Asymmetric - where di�erent strategies are available to di�erent players.

� Strategy - a possible move (one of many)

� Zero sum game - if a person wins the other will lose the equal amount.

� Non zero sum game - The situation where winning or losing does not mean
players will win and lose equally (competitions with places being a good
example). Monopoly where there is an in�nite bank is not zero sum which
also brings in the concept of players having resources that are in�nite,
�nite to the player or �nite to the game.

� Cooperative - a game enforces agreements between players.

� Simultaneous - players act at the same time

� Sequential - players act at taking turns and possibly have the chance to
analyse and react to earlier moves.

� Stateful - previous plays of a game have an e�ect on the later ones. A
standard RPG is stateful in many regards by virtue of experience/levelling.

� Stateless - previous games have no e�ect on the later ones. A standard
�ghting game for example is stateless.

Breaking a game or sections thereof using this concept can be used to create a
good AI or good game mechanics and be used to compel certain types of play
which leads into mechanism design.

306

Mechanism design By combining terms of game theory and creating rules
you can aim to create certain play styles or indeed AI to conform to certain play
styles. In Tetris for instance you have the option to do an in�nite spin but when
you are playing against an AI/player then you are allowing them e�ectively free
reign for several �turns� which in turn will mean you probably end up with a
screen of garbage, equally the game lessens garbage if you make lines but you
might want to take some and thus allow yourself the potential to give more lines
of garbage to the other side. This further feeds into AI as you can build a series
of strategies for a game and turn one or more of them o� to make the game
easier for the human players, and going back to Tetris, in this case have a look
at Tetris DS, then if you play the AI on easier modes it will stop doing things
like hard drops or even soft drops, it might stop holding pieces to make for a
tetris at a slightly later time and similar things.

Further to this you have things like scoring systems and experience rates
which also bring on aspects of psychology in greater and greater amounts, how-
ever as a ROM hacker you might be interested in lessening or furthering the
game engine. For instance in an RPG you might not wish to have to �grind� to
gain experience for a couple of hours to further the story but the game more
or less demands it (a trade o� developers of RPGs almost invariably have to
make) and you can bypass this. Equally minigames have been extracted from
larger games on several occasions and in others gameplay was radically altered,
albeit within the same engine, to do something like a boss rush mode in a game
like Castlevania or Metroid (both titles noted for their exploration elements) or
even a rush/�boss�alley in a game like pokemon via a premade save and level
hack which negates the entire explore, capture and train (possibly/normally to
overpowered) element the games are based on.

The main problem then of the mechanism designer is that game theory
largely assumes that humans are both rational and playing for self interest,
although things have been made to compensate for the lack of this.

5.7 Flash cart and emulator theory

Although many ROM hackers never have to worry about it sometimes it is
nice to know how �ash carts and emulators get things running so as to be able
to work around any anti piracy (AP) protection or allow games to save on
hardware other than the cart/disc they came on or use certain features to your
advantage; the GBA slot is available in DS mode and who does not want an
extra 32 megabytes of fast, sadly read only, memory mapped memory to play
with when the base system has just about 4 megabytes, in which you do also
have to stick some kind of binary for the processor.

On top of this it will probably not be such a problem in the future but histor-
ically several ROMs have been hacked to work better with some workarounds or
simpli�cations that emulators use (on the handhelds this often meant graphics
tweaks to work around display size limitations or layering issues but it can be
more in depth than that). ROMs can also be hacked to work on the emulator
if it lacks a feature (say emulation of an extra chip or in the case of the NES a
di�erent mapper), although the former is often one of the hardest hacks to do.
Another one might be to allow �ash cart features to work better; much like you
may �x a bug in a game the limited scope of �ash cart extras might be very
simply sorted by allowing a game to more gracefully handle an error case or not

307

do something that troubles the feature.
If in the following you notice a pattern of the Pokemon franchise frequently

causing troubles for �ash cart owners/makers, ROM hackers and emulator users
you would not be the �rst. Indeed as a result once tools get made (they have
for every mainline Pokemon game to date) Pokemon has a fairly nice engine
that allows for some people to make some nice hacks without much employing
much technical skill but unless you are actually wishing to learn some of the
more advanced techniques in ROM hacking as a result of a lot of these extras
then pokemon makes for a fairly poor game to to learn on, and this regardless of
what you are trying to do short of perhaps using an emulator to grab graphics
and musical assets.

Emulator theory, unlike emulator coding, is actually very simple so beyond
this paragraph it will not really be covered in earnest. Emulator theory then
reads �whatever the original hardware/runtime did (up to and including undoc-
umented features) make your emulator do as well with the same timings�. You
might be able take shortcuts and cut corners and indeed half of emulator pro-
gramming is about �guring out what and when you can29skip something over
without ill e�ect, without much ill e�ect (for the greater good and all that) or
indeed what you can skip over/change/work around to good e�ect; no sense
emulating 20 minutes of loading a tape when all it does is copy to the contents
of it to the memory, and if the original console had a cheap and nasty graphics
preprocessor/modulator30, as many old consoles did to get so as to get it to
work on RF inputs for TVs, and you have glorious RGB from your emulator's
internal rendering then you can forget the RF side of things. However if the
ROM/ISO does not work properly your emulation is not complete or accurate
enough.

A related discipline to emulator theory is in-hardware extras. Flash carts
and mod chips are often sold on their abilities to enhance play but seen as they
run in hardware they are bound by the restrictions of it unlike an emulator
where everything is visible and able to be manipulated (providing you have
development options in the emulator or go to the trouble of attaching a devel-
opment/debugging tool to your emulator as many cheat makers do with tools
like emuhaste). The three big things as far as most ROM hackers reading this
document are concerned are

29One of the most interesting things to come out of N64 emulation and which has since
been seen elsewhere was the concept of dynamic recompilation. This is where the console
itself would not be emulated but the game code which was written in C could be converted to
the architecture the emulator was running on and gaining a massive speedboost as a result.
Naturally it was not foolproof and not everything worked with it but when it worked it was
amazing and allowed machines that otherwise had no chance of running something to run the
games at full speed.

30Do note many people will want things to appear exactly as they did in better times
on old systems and many developers would employ workarounds for shortcomings here and
for that matter continue to do such things matter to this day; you might see audio being
ampli�ed/normalised to the point of clipping, GBA developers upping contrast to allow for
the non backlit original GBA models to look nice, many modern console games are still
optimised for TVs that are rarely properly calibrated and further a�eld many web developers
are encouraged to make their stu� look good not on their nicely set up screens but the junk
most people have. Likewise those shortcomings can be used to cover for things (a fuzzy RF
signal allows for a very crude type of anti aliasing) and such improvements are one of the
main criticisms of emulators and reasons given for the preference to use actual hardware.
bogost.com has a nice discussion of the issues of CRT and how some have set about emulating
it.

308

http://bogost.com/games/a_television_simulator/

1. DS save states. A save state is simply the contents of every piece of
memory, register and related concept bundled into a �le to be restored a
later date. The DS does not have full access to entire memory though in
hardware (some is write only, some is not mapped and more) so savestates
are in many ways incomplete which is one of the main reasons (the other
being the third entry in this list) why they do not work very well. You
could try providing some example data for the section or trying to hook
it as it writes and note that down to use later if you wanted.

2. RAM cheat injection. A �ash cart or action replay might use some tech-
niques here but they usually have onboard hardware to help with this so
this mainly refers to tools like GABSharky, GBAATM and DSATM that
often worked by adding entire cheat engines on top of the game itself and
by the nature of how cheats need to work (remember one of the primary
cheats is constantly write/hold a value in ram) would run always and run
alongside the game code (most consoles not being made for multitasking)
by some manner.

3. Timing changes. Possibly the most important of all and has manifested
in many ways over the years. Some examples are GBA linking via link
cable has been seen to be troubled timing changes as a result of new
interrupts for soft reset, cheats and in some cases save handling, savestates
in hardware have been seen to be troubled by this for if you are too slow
restoring or saving data crashes can happen and further some game crashes
are related to this; Castlevania Portrait of Ruin on the DS was poorly
coded and eventually �xed by �ash cart teams (read AKAIO) but the
result was if data was not read fast enough the game would crash which
was mainly related to speed and more importantly latency of �ash cart
reading but it was exacerbated by having hooks in the game to do things
like soft reset, Animal Crossing for the DS also had similar problems.

5.7.1 GBA

The following has information on the custom things and things that �ash cart
designers had to handle

AP and Saves What little AP that was seen was traditional save check types
launched outside the standard save routine or related things and in most cases
just caused the ROM to fail to launch (usually with an error screen), fail to
save or possibly in the case of Samurai Deeper Kyo might have caused the game
to be unbeatable past the �rst boss although that is uncon�rmed at present.
The author of mgba has some nice analysis of the classic NES anti emulation
measures.

Most issues running GBA carts historically and to this day came from either
new save types (long since sorted) or extra hardware (solar sensors, tilt sensors,
GBA wireless adapter support and games like Plaston Gate and Legendz -
Yomigaeru Shiren no Shima has a connection peripheral you had to connect
a device that looked like it had some processing ability onboard) although there
are undumped games like the Shrek video purportedly using bankswitching that
would also need to be sorted to play on �ash cards.

309

https://mgba.io/2014/12/28/classic-nes/
https://mgba.io/2014/12/28/classic-nes/

Saves on the GBA The GBA does not have a value in the header or
anything to indicate save type but if you do an ASCII text search for EEP-
ROM, FLASH or SRAM and one comes up (if not you probably have a ROM
that uses passcodes to save or maybe some types of homebrew) you have the
broad category and emulators like VBA used to and maybe still do stop here
causing some problems like having to manually select the save type for things
like pokemon but after that there will be some numbers to indicate sub type
of which there are a few for each. This search is quite hard to do on limited
hardware and with most cart software being derived from devices using NOR
memory which is very hard to change things in place for or custom �ashing tools
to manage it is why most GBA �ash carts tend to need ROMs patched before
being put onto devices.

After this a handful set patches (no memory locations or relative locations
to trouble things here) that vary in distance from the name are used to change
the game to using di�erent save types.

Related to this and seen again on the DS was the gamecube linkup for certain
games that also needed to read from a given save type or indeed a given header
(modern �ash carts load a loader and then load a game making them a bit
harder to have appear as simple carts in some cases). At present no game has
been seen to be �xed here and it is unknown whether it is a thing that will need
to be �xed in multiboot (ARM code), gamecube side (powerPC variant code)
or instead it is timing related or possibly a combination of all three.

Extra hardware Extra hardware was twofold or maybe threefold depending
upon how you want to look at it.

1. Seen only in �ash cards, Hong Kong/lucky lucky man/tourist trap spe-
cials (the 30 in 1 devices you commonly found (�nd?) in holiday resorts)
and some undumped GBA video ROMs (there were some feature �lms
like Shrek released) was bankswitching. The GBA could only address 32
megabytes of space but there is nothing stopping you from sending a sig-
nal to the card to change to a new page/bank/section to gain a bit more
space to work with. It is a a technique used extensively on earlier cartridge
systems and systems where cartridges were used for memory cards but not
on the GBA. In laste 2015 the games were �nally dumped and analysed.

2. GPIO and SRAM. The GBA cart features some extra buses or carts could
just use the SRAM mapping to have the extra hardware be available to
the GBA CPU and memory in general. RTC, solar sensors, tilt sensors,
the e-Reader (although this gets somewhat more complex) and more used
variations on this theme and it would also return for the DS in various
manners. Much like the button presses much of this was copied/debounced
to another area to be used and that was where hackers could come in and
inject data to �x things.

3. Stu� like the GBA FM radio and similar often just used the GBA slot
power lines to power themselves as opposed to actually interacting with
the device in a meaningful way.

310

https://mgba.io/2015/10/20/dumping-the-undumped/

5.7.2 DS

The following section contains information on the DS AP, saves and extra hard-
ware. DS saves are not really going to be covered as they were largely the
domain of �ash cart makers who either patched the game or physically emu-
lated down to a protocol level (originally in carts that used save lists to change
the onboard FPGA or CPLD into a pin for pin compatible version of the original
save chip and later in carts that added clean/special/ghost mode in an attempt
to allow games to be played before proper �xes were made). Still if you are
interested GBAtek has more but the general idea is the SPI bus was more or
less mapped to memory and that had access features. The DSi and 3ds checks
that are done to check for �ash carts are a bit elsewhere. Mainly as the carts
themselves pretended to be one of the games on the whitelist of older games
(newer games saw further signing and were unsuitable for this) it was a fairly
classic example of check to see it was like the original, counter the checks, new
checks, counter...

AP Three principle types of AP have been seen on the DS although realisti-
cally more could be generated and the existing methods could be made harder
to detect and remove.

1. Save timing check. EEPROM takes a known time to save and the types
of memory/emulation most �ash carts use in their general operation will
save in a di�erent time (usually far quicker) which can be detected. Carts
with clean mode, special mode, ghost mode..... and old savetype list cards
being the main exception and most of those only have those modes to
allow things to be played pending a proper �x.

2. Binary checks - here the binary or a section thereof would be hashed
and if it did not match the ROM would see a failed AP check and act
accordingly. Again clean mode, special mode, ghost mode..... and old
savetype list cards would often dodge this.

3. Below 8000h reads. The standard DS card read protocol does not read
below 8000h in the ROM (nor should it need to) and many �ash carts
would not handle these requests properly which is to say they would return
the actual data as opposed to following what should happen. Most good
cards have since �xed this/implemented proper below 8000h handling but
you can remove the reads and none were ever observed to attempt to use
the result other than the check if you want to try optimising the ROM
(most AP related slowdown will be related to the binary checks though).

A detailed historical analysis of the development of DS antipiracy is outside the
scope and interest of this document but there are things to be learned from it.
Initially AP routines would cause the ROM to simply not function/crash very
very shortly after boot but later other things would happen (one of the earliest
examples would be Final Fantasy Crystal Chronicles that would act instead as
a demo), others would fail to save, others would fail to allow progress, Phantasy
Star changed drop rates for items and more.

On a programming front companies a �rst did develop their own basic meth-
ods that allowed for fairly generic patches to be added to �ash carts and in some
cases generic cheats made. Later on though hundreds of checks were added that

311

http://problemkaputt.de/gbatek.htm#dscartridgebackup

launched at any point in the game, could be buried in overlays, could well sit
in THUMB mode, did not appear as a standard/common type (no �simple�
searches for a given set of instructions), could fail and not act upon it for sev-
eral cycles, be hidden in the ARM7 binary (remember it is not really touched by
the developers and exists more as a dynamic library and hardware management
of sorts) and more meaning each check had to be found and patched out and
this is also why simple cheat �xes for AP stopped happening.

If you are at the point where you can do something about it the solution is
probably obvious but never the less it will be covered. Your three main choices
are patching out the check entirely so it never happens (the proper and not really
any harder way), make the check return the expected value (depending upon how
it works this might be harder than stopping the check entirely) and making it so
the �IF ELSE� (or in ASMmore likely branch if) routine it stemmed from has the
failure condition changed to jump to the �all is well� condition instead (another
sub optimal method for most occasions). With the hundreds of checks that
eventually became default the games did actually often see noticeable although
not necessarily game breaking slowdown so preventing the check from happening
is the better route.

Extras Various methods existed here to expand the abilities of the DS beyond
that of the original hardware.

GBA slot extras The options were twofold here

1. GBA cart reading. Various DS games could read the GBA port to see if
an earlier version of a game in the franchise or a related one (Megaman
and Boktai/Solar Boy Django are linked in many ways) was present and
usually unlocking some token extras as a result. This usually amounted
to just reading the header so you could indeed trick it but having a small
portion there but some games and most notably Pokemon diamond and
platinum that could read entire saves from earlier GBA games allowing
people to trade up through the series. This troubled �ash cart users as
their saves would be in the SRAM and the DS game would naturally be
hardcoded to use the Flash type memory used by the original GBA games.
Cory1492 made Pokepatch however that �xed it for many di�erent GBA
carts. Also the DS version of the Opera web browser has some more
memory (12 megabytes that was mapped oddly making it useless for GBA
ROMs) that was used for the web browser (homebrew later got support
for it added thanks to a library/API and the web browser was later hacked
to support some types of �ash cart RAM instead).

2. GBA slot expansions. Arkanoid had a paddle controller (which mario kart
and a few other games were later hacked to support) and guitar hero had
a guitar grip. These mainly worked on the buses like others mentioned
here but most people that had to hack them instead used the fact that
the readouts were debounced to regular memory and then attacked those
areas but if you want more see the touchscreen to dpad hacks as it is much
the same idea.

DS slot extras A handful of things happened here.

312

http://filetrip.net/nds-downloads/rom-hacks/download-pokepatch-42-f27240.html

Pokemon Black and White came with a small device called a pokewalker
that was a step counter than provided experience for the pokemon it held. It
communicated via an infrared port on the back of the DS cart that used the save
bus (via a selector) to activate it and this troubled traditional save grabbing
techniques that had not seen this before as they did not know how to trigger the
use the save option. Before software save grabbing tools were made hardware
tools had the magic packet sent (kind of related to an attack called a replay
attack) or people could solder the save section to be always on (or selected via
a switch) and use the older software.

Homebrew devices like the DSerial and DSx lights used abilities here. More
recently enhanced �ash carts like the Supercard DSTwo, iPlayer (not o�cially
made by Supercard) and iSmart MM/iSMM (an OEM iplayer from iSmart DS
with the ability to play DS commercial ROMs unlike the iplayer) which have
onboard processing capabilities31 that allow for serious extras (playback of most
types of video up to SD/PAL resolutions and emulation of things up to and
including the PS1 and Amiga in the case of the iSMM) and more classically in
the likes of onboard processing for DLDI where CRC values for data written to
the SD cards of �ash carts would be calculated onboard.

5.8 ROM hacking �protection�

For various reasons some that edit ROM images have not wanted their works to
be used as a base for a further work and so have attempted to protect their work
by technological means; this sort of thing tends to be seen in games that have
high level tools made for them which usually means Pokemon, Fire Emblem,
Mario platformers and Mario Kart games, Final Fantasy, Advance Wars (kind
of), Golden Sun and similar franchises. Other protections can include protec-
tions added to a game so those trying to do repros (a term for the carts that
have hacked/modi�ed versions of games and are done up to look like originals)
can not remove the �if you paid for this then you were ripped o�� type screens.

As the rest of the document aims to demonstrate if you have the �le in front
of you on a machine you control then you can edit it. This means in addition
to asking in the readme/release notes (a better method in general), putting a
bit of text somewhere or otherwise �signing� (in the classical sense rather than
the cryptographic sense) so as to be able to demonstrate origin, a technique
used across computing and modern intellectual property �elds, you do not have
much choice in the matter.

Most of the time in the high levels tools world this edit is a simple �ag
placed somewhere in the ROM (or one of several places if it is especially ad-
vanced) that any GUI tools that want to comply with the standard will read
and tell the user that the ROM has been �locked�. Occasionally things will be
taken a step further and part of the ROM is broken and then �xed at runtime
(usually seen in Scene groups that make intros for games but occasionally seen
elsewhere) or a similar technique to the Playstation raw LBA reads approach
(conventional �lesystem ignored and deferred to elsewhere) was made/hinted

31The pitfalls and quirks of these sorts of devices is somewhat outside the scope of this
document but much of the time with them it was observed that programming was easier if the
ARM9 was kicked to a similar state as the ARM7 in commercial games and only really used
for basic IO and handling as maintaining synchronisation and working around the limited
bandwidth of the DS slot and the protocol thereof was very hard.

313

http://natrium42.com/wiki/DSerial

at. This is mainly mentioned as some of these techniques can frustrate �ash
cart operation with several scene trainers on the DS doing as such and some
GBA hacks took to changing the header (speci�cally the 4 bytes reserved at
the o�set BE hex) in a GBA ROM which most emulators and header viewers
did not complain about but carts like the EZFlash 4 did not agree with (maybe
as a function of needing the 00 to end a read similar to some of the potential
problems discussed in DEADBEEF padding).

Those that tend to be aimed more at reproductions/repros, these tend to be
made by well versed hackers and programmers so any method you can dream
up is a possibility here. Typically they only care about leaving the credit/if
you paid... screens in so they are unlikely to trouble your �ash cart, emulator
or further hacking work. In the case of the latter many translation teams that
seek to protect their work will realise someone might want to change the stats,
levels, music and more of the game and as such will tend not to do things like
whole binary checks.

314

Part III

Examples, oddities and techniques.
Where the previous part was a bit theory heavy and example light this part
will largely contain examples of common things, a few examples of less common
things, some techniques and concepts that are worth knowing and being able
to employ as well as act as a bit of ROM hacking/game development general
knowledge dump. On the face of it this part might seem less valuable than
previous one but this is aiming to be something of the equivalent to the time
you spent a couple of hours messing with something back when that you use to
this day as opposed to the hours and hours spent say memorising facts you do
not envisage ever having to know again outside of a trivia night.

6 Crystaltile2 general usage guide

If you have read the rest of the guide you will likely have seen several screen
grabs of Crystaltile2 but might not be familiar with how works as a whole. This
is what this section aims to sort.

Crystaltile2 is a fantastic general purpose ROM hacking tool but it still
retains enough low level features (and indeed might even be said to revolve
around them) to be useful to any low level ROM hacker, though ones working
in the GBA or DS will bene�t more. The original application was in Chinese
but it has since been translated enough to be workable (it was always useful)
for those that prefer things in English. This is a guide to the general use and a
few speci�cs of crystaltile2.

Although a few functions exist before you do it the tool really springs to life
when you open a ROM. For the DS at least the usage is twofold

1. The main program window containing a hex editor, tile viewer, disassem-
bly viewer (there are minor editing abilities), tile editor, text related tools
and menu options for other tools (compression, text searching, NFTR
font editing and more). Many of these modes have class leading features
although there are still some traps for the unwary and bugs that might
need working around. Also some features are only available when certain
modes are selected and the locations for some of these might be a bit
counter intuitive.

2. The sub window for the �lesystem viewer (DS ROM images only) which
is accessed by clicking the DS icon. As a quick aside there is a minor bug
of sorts where if you maximize the �lesystem viewer to a second screen it
will minimize when you double click a �le to set the o�set (a useful trait
when you only have one screen) which you can get around by manually
resizing the window to take up as much as you need. Double clicking
sets the viewer o�sets to the start of the �le and right clicking brings up
any extra options the program might have for the extra formats (graphics
are especially useful here as you can tell the game to load the graphics,
the layout/format and the colours necessary all with a few clicks) as well
as providing you the option to export a �le from the ROM, import one,
extract (as in compression) if it detects it and compress a �le and import

315

it as well as export all �les or rebuild them when it is done. On top of
this it should have some information on the binaries and is one of the few
general use tools most people will have that displays parsed information
on the overlays like where they will eventually be loaded into the ram.

The combination of the two allows you to dart around the ROM setting the
viewers to given points and parsing any data you can (quite useful for 2d image
formats) and sending out �les for further analysis.

Some screenshots of the program
Main hex editor view

Basic �le system viewer and pulldown menus

316

Basic �le system viewer with a right click
When compressed �les are detected decompression and compression (import
compressing as you do) become available.

Image viewer using custom view size
Each �frame� has a separate palette for some reason so ignore the broken colours
in this one.

317

Assembly viewer set to view an overlay

Tile editor

318

Memory viewer/emulator hookup
Crystaltile2 can interface with no$gba debug version to grab main ram and
VRAM data.
You can access the options by pressing �le and then DS emulator before selecting
the emulator after which you get you a window like

You will probably have to click the >�> to get the list of options and you can
de�ne a few of your own.
From there click whichever you wish for and most of the time it will produce
a new �le containing all the data. Remember though you can dump memory
from the debug version, desmume and use many of the cheat tools which are a
lot more stable.

319

Script editor
Crystaltile2 features a basic but well featured quick script dumping tool which
has several options. Typically the �le is loaded, any tables selected in the tbl
pulldown menu (and made to use it in the same). After this ambassador search
is pressed and it returns a list of what it thinks are viable sections of text.
From here the special search methods pulldown menu will allow selections to
be made. The �nal option of special search methods allows an export of the
selected �ndings to a text �le containing the location, length and decoded text
in whatever codepage you deem necessary. Double clicking on a result takes you
to the hex editor. Basic pointer options are available but they pale compared
to the more traditional text extraction programs.

7 GBA tracing

GBA tracing was mentioned back in the discussion of assembly hacking and the
theory behind it all covered but a few worked examples are probably useful.

Tracing options

It is unknown if no$gba debug version can still be legitimately obtained.

no$gba One of the fullest debugging emulators available anywhere. GUI driven
with the option to set breakpoints and �ddle with assembly at runtime.

VBA-SDL-h A more command line driven program but on a par with no$gba
as far as useful functions goes.

boycott-advance Less featured than vba-sdl-h but more GUI focused and still
has breakpoints and a few other nice features.

There are three main uses for tracing/debugging emulators as far as ROM hack-
ers are concerned

1. Finding where a given resource is found

2. Observing and reverse engineering game logic (actual game handling of
health and such or how it unpacks/handles a format)

320

3. Finding space to put �les/data in memory

Finding where a given resource is found is especially useful on systems like the
GBA that lack a �lesystem and so probably lack a clear de�nition of where
things can be found.

The usual process is to �nd the data of choice in memory (hopefully it is
static) and then running the game to that point again but this time with a
breakpoint set on anything that writes to that section. On the GBA (and DS
for that matter) the CPU has some basic access to memory (although recall it is
done via actual commands rather than as part of an instruction as it is on x86
family machines) but most access that requires extensive data transfer is done
via DMA or SWI calls (for compressed data although not all games use SWI
calls or even SWI compatible compression). SWI calls can be logged themselves
and even fed to decompression tools to try to �nd data.

Observing game logic is often part of creating some of the more far reaching
cheats but the usage is twofold as game data in the ROM/ISO might not be the
same as the data as used in RAM and the game logic itself might want to be
manipulated either as a basic experience/damage multiplier or something more
in depth (which can also feed back into understanding formats that are not
readily apparent). Remember though that by the time you see it on a screen it
has probably been done for several hundred cycles.

Memory constraints are ever present on embedded devices and some ROM
hackers have been seen to optimise a game to gain the space on occasion.
Granted that is not necessary and it might be easier to instead approach it
from another avenue (dual tile encoding, looping audio sooner and such).

7.0.1 Worked examples

VBA-sdl-h is the choice of tool here but the ideas roughly follow for boycott
advance and the developer version of no$gba.

8 DS tracing

Although DS assembly hacking has been done for some time it is not as advanced
in terms of power of tools doing it as the GBA and earlier consoles. Equally
the cart not being mapped to memory at best complicates the basic resource
location methods and places them outside the fairly simple mechanical process
that the likes of the GBA enjoys.

DS debugging emulators

With the possible exception of no$gba DS debugging emulators are not as ad-
vanced as the likes of VBA-SDL-h and boycott advance on the GBA.

To this end there are three main emulators with any real debugging support.
It is unknown if no$gba debug version can still be legitimately obtained.

no$gba will not work on later ROMs unless you otherwise bypass any included
anti piracy but has a lot of abilities including the ability to set a variety
of breakpoints.

321

desmume although it features disassembly support and a variety of memory
viewing, dumping and editing options (in general and as part of cheats)
as well as a full complement of tile, map and other viewers much of the
debugging functionality is aimed at homebrew via the GDB stub.

iDeaS the main claim to debugging status alongside the other two is the sup-
port for run to selection and then the step function after that as well as
the ability to manipulate registers.

8.1 Cart read command

GBAtek details much of the cart read protocol but for most purposes �B7aaaaaaaa000000�
where the �a� values are a 32 bit location (in big endian/most signi�cant �rst
no less) is the only command that matters. Do remember the binary is loaded
into memory and can contain anything the game might use in addition to the
binary itself.

8.1.1 Basic lookup and methods for it

The command itself more or less sets a window into the ROM image which can
be read accordingly

Compression aside With the DS cart not being memory mapped there will
occasionally be a copy to ram of data as seen on the cart and a subsequent copy
to where it needs to end up (in the case of audio or graphics) can happen not
to mention compression will often operate like this.

8.1.2 Header reverse engineering/generated values

The DS has a �lesystem and those �les will often house further �les or data
sections which are una�ected by the �lesystem as a whole. This is very nice as
it means a whole ROM does not have to be recompiled by the original coders
when a small change is made and likewise a�ords a considerable amount of
�exibility as far as ROM hacking is concerned.

It is then quite possible to build up a mathematical expression to �nd the
�nal location of a �le and although many

9 Reverse engineering various ROM images

The follow section will be comprised of a basic and in some cases more advanced
teardown of a selection of ROMs both random and handpicked to demonstrate
certain traits. Although the distinction between genres is not brilliant from
an artistic standpoint it is somewhat useful from a technical standpoint. This
being said some of the best titles on any system or indeed examples of said genre
might well feature elements of other �genres� with one of the most popular
options here known as adding RPG elements where what were traditionally
stateless (ignoring the odd one use powerup carry over and lives) games level to
level gained a small measure of character progression (experience and upgrades
being the main methods) becoming a commonly seen term used in discussion of
games.

322

http://problemkaputt.de/gbatek.htm#dscartridgeprotocol

All that and what follows being said play the game, look at some game
footage and if you can simply play around with layers in an emulator as that
will give you clues as to how things will be set up in the game.

9.1 Large archive on top of �lesystem

Although the DS has a �lesystem there have been many games that use archives
big and small and some that archive their entire game data (maybe give or take
some audio or download play).

9.1.1 Tony Hawk

One of the earliest examples of this arrived back when people were ripping audio
and such from games to get them to �t on smaller devices and as this title had
a �le larger than most of those carts it.

9.1.2 Star Wars - The Force Unleashed

9.1.3 El Tigre Make my mule

Used as an example several times already.

9.2 Compression

Compression has been known about and fairly well documented for a long time
(the 77 in LZ77 refers to the year it was made) but to do it usefully in real time
did not really take o� until the GBA and to a slightly lesser extent the 16 bit
era. Field speci�c compression (dual and multi tile encoding, palette swapping
and all the other methods covered in developer tricks) and simpler methods like
run length encoding have however been around for a long time. The GBA and
DS both feature decompression algorithms for two popular methods (LZSS and
Hu�man) of various �avours inbuilt into the BIOS and well supported in o�cial
developer kits. The BIOS decompression was not always used as they were
a tradeo� between usefulness, resources required, size in the BIOS and overall
speed which led to developers either implementing faster methods to decompress
�les compressed with otherwise standard BIOS compression or implementing a
custom method of compression.

Typically custom usually just means it allows for di�erent lengths or com-
pression or uses a custom �ag type (the BIOS compression is quite strict as to
what it requires in a compressed format) rather than a truly new idea as to how
to compress things for as with most areas of science and technology massive
leaps are quite rare but small re�nements are quite possible. To this end if you
know how compression works and can think through what you would change to
improve compression you will usually be OK.

Likewise where developers do want to reduce sizes (ROM chip sizes increase
in powers of 2 and price does as well and one hundred thousand times the
di�erence in price adds up to quite a bit) but ROM hackers are not always so
limited (memory issues aside) so removing the compression in the �rst place can
be done and often is. In some cases removing compression actually speeds up
the game as well.

323

Remember on the GBA you will usually have the whole upper 16 megabytes
to play with and the DS is limited to 512 megabytes for the ROM which again
few ROMs ever get/got up to not to mention being able to create two ROMs
and say play to this point then swap.

GBA

9.3 First Person Game

There are two main classes of games viewed from the �rst person.

1. Those that attempt to use the DS 3d to make a game

2. Those that use more conventional 2d animations

Naturally there are combinations of the two as seen in the platform type games
which use 3d. The DS 3d is not terribly powerful though so some games opted
to make more traditional style shooting gallery type games which were layers
and sprites. Prerendered 3d backgrounds did feature and similar techniques
seen in early dungeon crawling titles where the camera was moved from �xed
point to �xed point or isometric imagery was possible but that is leaving �rst
person.

A few GBA games (mainly ports of older Doom 1 era �rst person shooters
and �lm tie in games doing similar things) did however use bitmap modes to try
to do actual 3d and as a mode7 style perspective transformation was possible
on the GBA (and DS) mode7 style methods could happen..

9.4 Platformer

For most here the big distinction is between 2d and 3d but that might not be
a great one as far as looking at what sorts of �les will make up a game (both
types will usually have levels themselves (even if they are 3d it will still have
some mapping data for the objects and items), the objects and items and any
animations they do.

9.5 Fighting games

For most they are usually broken into �xed stage (street �ghter, tekken, pow-
erstone) and scrolling stage (Streets of Rage, Golden Axe, earlier Castlevania
games) but that is not that useful as many times the scrolling stage will be an
illusion as you might walk on and then get a signal to continue after defeating
so many enemies. The distinction between 2d and various forms of 3d are also
possible.

9.6 Role playing games

A variety of methods have been seen here and categorisation is extremely hard.
For the most part though the ideas of world map, town/castle maps (or indeed
shops), full worlds (either classic dungeon crawler or �full� 3d) and where any
�battles� will be located (separate locations on in level). There are an enormous
number of tweaks to various formulas (random battles vs enemies on the world
map, turn based vs active battling) that can have a radical e�ect on the main

324

game but beyond a routine handling things on a world map or dungeon map
they might have little e�ect on the �les and their contents.

9.7 Racing games

There are several techniques used to make racing games although in practice it
boils down to four methods as far as technology goes

1. Overhead 2d and isometric 3d (micro machines and Racing Gears Ad-
vance)

2. Conventional 2d (Space harrier, Outrun and Road Rash)

3. Mode7 style (SNES FZero, Mario Kart SNES and GBA)

4. Full 3d (Most DS racing games)

Overhead 2d and isometric usually use similar methods
Conventional 2d are usually left and right �race to the horizon� a�airs with

turning usually being something of an illusion and any vertical movement even
more so.

Mode 7 is technically 2d but is di�erent enough in concept as it allowed
proper turning.

Full 3d is as full 3d usually is (although 2d skyboxes are possible) and a full
3d world is made.

9.8 Puzzle

One of the commonly seen things in puzzle games is much of the text is rendered
as an actual graphic and stored in a similar manner to graphics usually as there
is not enough text to warrant a full engine. This not to say there can not be
text in the game but as rendering a fancy font would take serious e�ort much
of the text may still be as graphics. They are also some of the most likely to be
incorporated into other �genres� (Puzzle Quest being a good example although
it goes further and there have been a few mahjong (not solitaire) titles wrapped
in what many would

Broadly speaking they are subdivided into two classed

1. Computerised versions of traditional card/board/item games

2. Re�ex testing games

Computerised versions of traditional games (or indeed not so traditional games
but ones that could have been) vary as widely as the games themselves. Indeed
how to have a computer play them is often a �eld in computing unto itself
or at least a recognised problem (Chess and Go being two of the most famous
although games like mahjong are well studied too). In many cases this also leads
to the AI in said games being classi�ed as broken or broken by modi�cations
most humans are quite happy to handle and might not even notice unless they
take the time to truly analyse it.

Re�ex testing games on the other hand tend to have more in common with
other types of games (the Kururin series for instance is often classi�ed as a
puzzle game but seeing it run would see most hackers approach it as they would

325

http://cs229.stanford.edu/proj2009/Loh.pdf

a platform game). Although there have been a few attempts at capturing real
world re�ex testing games few have worked that well and many are truly quite
abstract (consider what Tetris truly is for a moment).

9.8.1 Mahjong game

9.8.2 Tetris

9.9 Other genres

Probably the most notable other genres are those of the visual novel, simulation
and point and click adventure although in recent years the visual novel and
point and click adventure have become somewhat intertwined (see games like
Ace Attorney/Phoenix Wright). Equally many games that might have at one
time been aimed at a visual novel format have instead opted to use a 3d engine
instead although that heads more towards the art games territory. It should
be noted visual novels have many examples of ultra simple titles consisting of
nothing but a few images (with text in the images) to full on scripting languages
so assuming it will always be simple is not a good idea.

Other common genres include music games, artistic games (painting and
such) and utility games (language learning being a common example) but other
than music games almost invariably use extra formats to work most of those
will usually want to be approached on a game by game basis.

10 Developer leftovers

Mentioned several times in this document and the subject of websites like The
Cutting Room Floor as well as a thing a lot of ROM hackers enjoy �nding
and discussing within games. The interest in them is threefold as people very
much enjoy songs, sprites and things that did not make it into the �nal game,
from a programmer perspective it can give clues as to how things were made
(references to other) and things can be found that directly help with the reverse
engineering of formats either by having very simplistic versions of the formats
(you can reverse engineer an entire model of a dragon if you want all several
thousand points but if the developers leave models with a cube, a sphere, a
cylinder and maybe something �at it is the better bet to examine that instead)
or on occasion tools, logs and parts of them that give things away.

Princess maker 4 had nearly the entire source code for the game included.
Zoids Saga left the log �le used when sounds were generated (a format known

as SMAP) which has been credited as one of the main things to help with reverse
engineering the original SDAT format.

Advance Wars Days of Ruin/Dark con�ict had a full Japanese script in the
game and the game was never released in Japan.

Magi Nation on the GBA had a full English script within it despite never
being released outside Japan

Mario Kart DS was observed early on to have levels that did not make the
�nal cut and this spurred a lot of hacking.

326

http://tcrf.net/The_Cutting_Room_Floor
http://tcrf.net/The_Cutting_Room_Floor

11 Workarounds

Not all tools do the job properly, some times a small change might be called
for but creating a program for it might not be that easy and in the case of
SDAT and SDK 3D the existing tools can fall somewhat short. To a good ROM
hacker though this is merely a speedbump and they will go manual or massage
the input to get what they need.

Related to this is the quick and dirty method. Where it might be nice or even
good form to have a fully �edged, if game speci�c, tool to do your work with you
can get a lot done with a basic tool that allows cutting up �les, some searches
and a spreadsheet that can handle hexadecimal at some level. Doing this also
allows you to get the necessary data out to other team member that might be
handling editing of text, graphics or levels as you �gure out how to �x the ROM
once you get the edited versions back or indeed if your task is just to rip the
various parts of a game (ripping sounds, sprites and models is quite popular
after all) and can otherwise locate the �les despite not yet understanding say
the initial pointer system (remember many DS �les start with a magic stamp
of some form).

Neither are as glamorous as coding custom tools to do the task but all good
ROM hackers are able to do this (it being a basic result of being able to do
abstract thinking).

12 Moving to a new system

This section is more concerned with what happens when a brand new system
comes along (whether you want to assist with reverse engineering the memory
mappings and IO is up to you and ROM hacking skills are valuable here but
this is going to focus on �le level work for the most part) as opposed to simply
moving to a system unknown to the hacker although it still applies there.

Along with abstraction mentioned elsewhere one of the marks of a good
ROM hacker is to be able to move to a new system (maybe having a �lesystem
parsing tool available) and start to pull apart things there despite either there
not being many premade tools or them not having any experience on the device
by virtue of them knowing how things tend to be put together. Such an ability
is not necessarily rare but it is one that those that restrict themselves to known
formats or high level tools will tend to lack (yet another reason many ROM
hackers have reservations about relying solely upon such things).

To this end/for the sake of clarity

� File formats tend to have �le sizes, magic stamps, headers and similar
things. Find these and you start getting the rest/good stu�.

� The technique of get a bunch of examples of a �le format and skip between
them seeing the di�erences (even by eye just switching between tabs in a
hex editor) is very useful.

� Compression tends to exist and be a variation on LZ or hu�man or some
known type

� File formats tend to match the hardware fairly well or be based on known
formats.

327

� Even if a game uses a custom encoding it probably still has error messages
and such in ASCII or unicode.

� The basic classes of instruction stay the same for every CPU and they too
are the basis for every program.

� Even if the processor is custom it is probably at least related to another
processor out there and the system itself probably does not employ some
never before seen architecture (there will still be graphics, IO, interfacing
options, general memory and storage)

� If you can get an old system or system of similar power you know (although
�les intended for high end home consoles have been �shed out of handheld
formats) much of it remains fairly similar in terms of �le formats (the
GBA, DS, gamecube and Wii share a lot of basic �le formats if not in
common then certainly in spirit).

� The above goes double for truly new systems (the bump for new systems
might be quite large but developers probably developed for both systems).

� Techniques like corruption and relative searching might be quite crude but
they are not system speci�c.

13 Developer tricks aka thinking like a game de-

veloper

Although you may spend a lot of your time as a ROM hacker pondering the
interesting implications of the programmers working on a game or indeed �xing
some of their mistakes there are equally some very clever programmers working
on games. One implication of this is developers employ all sorts of tricks to allow
them to bypass system limitations and in doing so make better games. Methods
to do this range from the obvious to the inspired and several are going to be
covered in this section. The very best games and level designers will often take
these tricks and work them into the game in such a way that the workarounds
themselves become part of the game experience (examples will be mentioned in
their respective sections) and indeed may even become tropes of the genre.

13.0.1 Level and mechanism design

A trick many learn early when having to deal with young children is to give
them the illusion of choice (rather than do you want to put your shoes on it
is do you want the red shoes or the black shoes) and it works surprisingly well
even as people get older. This is doubly useful as growth patterns typically get
very large regardless of the model used (even the basic model of two choices
leading to two choices each leading to another two choices ends up well into the
hundreds range before ten choices are taken) and allowing you to end up at the
same point eventually allows for a uni�ed story as well as less work although it
should be noted people do pick up on token choices or e�ectively token choices
�ve minutes before the end.

Further to this are all sorts of interesting psychological tricks (people really
do not like to lose things; see statements like �I have to win back my money�

328

when in gambling establishments or the opposite philosophy espoused by some
methods of gambling �the chips mean nothing when playing the game�), much
of the psychological aspects of game theory, things like reward schedules and
points/experience accumulation, behavioural economics but those are covered
elsewhere quite extensively as people are using them to great e�ect and studying
them intensely at present.

Here in a racing game the amount of twists and turns of hills and other such
things (bridges and such) will kept to minimise the amount of time the player
spends looking at where a far point will need to be rendered.

Games like the early Metal Gear games became stealth games owing to the
inability to render and account for large amounts of enemies on the screen at
once.

Mechanism design is actually a technical term falling under game theory
and for this paragraph and a handful of the following ones the de�nition will be
closer aligned to the colloquial term/de�nition but a short couple of examples
might be even been paid half what you would buy it for new (programming a
real economic model is very hard after all)?

Hidden variables and related concepts. An interesting technique/idea where
a game rule set is not fully explained (although it may still be readily apparent
to those that look) and players are left to �ll in the blanks (or not as the case
may be).

The �rst few entries in the modern Ninja Gaiden series had an interesting
mechanic where depending upon the timing you did the moves (typically after
landing from a jump) di�erent things could happen which was not mentioned
in the manual, the Elder scrolls series is well known to have hidden variables
controlling underlying aspects of the game (leading to several guides detailing
�min-maxing� your character), Borderlands had several variables but also hidden
subtypes of weapons within the and hidden stats for those, people have also been
known to ascribe a hidden mechanism where there is none (the next tetris block
for most versions of Tetris is random or random after a fashion32 yet owing to
a variation on gambler's fallacy, memory or conceit it will not be considered
random) or indeed personify a system (the game Left 4 Dead going to far as to
personify the system as the director in the literature covering it).

13.0.2 Sprite and palette reuses

Used so much it was noted back in when palette and image editing was cov-
ered. Here a limited amount memory (video, storage and otherwise) can mean
you can extend your apparent menagerie of monsters, townspeople and such
by recolouring them. It is also quite a nice point to put a bit of procedural
generation/dynamic regeneration in (especially in 3d a few changes to colours
and the values of various sliders can see an army of clones become a nation
of individuals or adding a tiny bit of randomness to the placement of entities
within a marching group of enemies makes a lot of di�erence).

32Modern versions of Tetris actually are supposed to draw randomly from a bag of possible
choices before resetting the bag and going again to lessen the possibilities of a random glut of
the same piece leading to potential to �count� pieces for an advanced player similar to those
that might count cards (various board games also allow for similar systems usually numbered
cards to be used in place of dice) meaning in the strictest sense a �bad run� will eventually be
followed by a �good run� assuming the same pieces are desired.

329

13.0.3 Pre rendering

Donkey Kong on the SNES as well as several other Rare titles are very much
noted for using such things but the most notable game in recent times would
have to be the early Resident Evil series.

13.0.4 Speed blur and fog

The wipeout franchise (a racing game series where you spend much of the race
going very very fast) is notable for using a blur e�ect when racing at speed,
originally and in many ways to this day it covered for the lesser rendering
abilities of the devices it was ported it.

Fog is a related concept that aims to make up for the less than brilliant
ability to render everything from your viewpoint to the horizon.

13.0.5 Loading covers

Games (on discs especially but cartridge and hard drive based games are not
immune to this) eventually have to load and have it take long enough that
it can not be done �behind the scenes�. Countless examples here ranging from
move practices on loading screens, loading tunnels/bridges in various open world
games, animations and images used to mask loading both in game (Resident
evil doors are good example but it goes further back to tapes where C64 games
would have pictures and maybe even minigames) and out of game (the developer
credits at the start of a game frequently do more than state the names of the
companies that had a hand in making it as any that attempt to lessen the initial
load times should be aware of).

13.0.6 Optimisation of loading

Whether this falls under general good programming or something else is saved
for a di�erent debate as it is useful to know about.

It has been seen in many occasions and indeed many methods of running
copied code on original consoles are often superior because they bypass it and
indeed consoles like the PS3 and Xbox 360 will have options to install games
to a hard drive to help it but data loading from a slow medium like a piece of
optical media has long been a bottleneck so developers try various things to get
an edge.

One of the most notable examples came the other way (copied games were
troubled where the original was OK) and it was for Star Wars Knights of the
Old Republic on the original Xbox. Here people at �rst would copy games on
a �le by �le basis (it was easier if you had an otherwise stock xbox that only
had around 5 gigabytes of drive space to work with which is smaller than a
dual layer DVD) but when reconstructed the game would see slowdowns and
loading pauses where the original was untroubled. It later turned out the game
developers had optimised the layout of certain pieces of data on the disc for
them to both be closer together (slower seek time) and faster to read on average
(code at the edge of the disc is generally accessed faster even if only by fractional
amounts).

330

Also coming o� that a method of copy protection seen on the DS in the game
Houkago Shounen (arguably the �rst title to use copy protection/AP) timed the
save and the �ash cart which was faster in most cases would be detected.

13.0.7 3d imagery in general

The 3d imagery �eld has provided a whole host of techniques developers can
use to make things look better (and will often be picked up on when they fall
short).Techniques include

2d texture replacement Various methods here including the basic things
like skyboxes but also including distant objects being replaced by 2d rendered
versions of what they appear to be to save rendering e�orts.

Texture mip mapping Read a book from across the room. The text which
would be so very clear when up close probably looks like a grey black blur
until you get closer. By the same token distant objects can have their textures
reduced in resolution so as to have to render less detail.

Viewpoint rendering Fairly obvious really but you only really need to render
everything the camera sees. Some interest e�ects can be seen where gamecube
games which were typically made to use a 4:3 aspect ratio were hacked to use
480p.

Backface culling Parts of 3d models that are not rendered at that point will
often be made clear/not rendered in an attempt to cut down on the amount of
detail that needs rendering.

Backface alternate usages If you have an item that is not normally seen or
not seen from a given angle you can use the reverse side to hold something else.
The sign from New Super Mario Brothers on the DS is a good example.

Not rendering hidden objects Surprisingly not done in relatively recently
in many 3d games. Here if an item is blocked from view it will tend not to be
rendered at all.

Dynamic mapping of textures Here in addition to all the methods above
textures themselves might not be mapped until the last moment.

Shadows and lighting Although the other methods have very interesting
things happen in them the things that go into replicating light and the related
concept of shadows is once more the subject of documents far longer than this
one. �Basic� things include the various mathematical model approximations for
things ranging from shadows, types of re�ection/colouring (ambient, di�use,
emissive and specular) and the re�ection models. On a more basic front the
lack of a shadow on an item, especially one on an ostensibly real world, is quite
noticeable (it is arguably a variation on the uncanny valley concept) but if you
stick a simple circular shadow it goes a long way to preventing it from being
quite as noticeable.

331

http://www.youtube.com/watch?&v=qombIUAadOs
http://www.youtube.com/watch?&v=qombIUAadOs

Most older systems will use basic circular shadows or have them and a more
conventional type of shadow at the same time.

13.0.8 Procedural generation

It was already covered elsewhere but it will need to be mentioned again. Here
you probably have things you are certain you want to happen in a game but
everything in the middle matters little as long as it falls within certain parame-
ters. If these parameters are random within a given range it can save an awful
lot of design work (recall the mention of growth patterns from earlier), save a
lot of memory space even if you did put the design work in and grant a lot of
replayability if done correctly.

Now although there is a lot to be said for rules of certain �elds allowing
nice things to be made history is replete with examples of masters of an art or
science breaking various rules and in the process creating something very special
so it is not a miracle cure but still a very nice tool. Not so many ROM hacks
have added a procedurally generated something where there was none before
but that could be an interesting hack.

Another side of this is when having to generate smoke (historically a fairly
complex thing to do properly) a simple method is used but with the addition of
a few factors it makes it changes it to the point where mathematical analysis is
needed (for a short enough sample every piece of random noise can be broken
down into a series of sine waves).

13.0.9 Noise on images and sound.

Some systems even allow for this doing this in hardware. The human eye/visual
system notices patterns and detail quite well and one of the easy ways to take
someone out of something that is supposed to be real looking is to make it too
neat (everything aligned or using straight lines) and too clear. By a simple
application of some noise this can be negated or seriously lessened.

13.0.10 Using the limits of the system/working to them

Play an otherwise identical piece of audio to someone not versed in audio theory
at two di�erent levels of loudness and most of the time you will be told the
louder clip sounded better. Similar concepts exist for contrast and sharpness in
visual things and all are fairly well known to both people that want to sell you
things and people that have to deal with things that have been sold to people so
developers play to both camps quite frequently and adapt their games to suit.

Of course this can be a bad thing should you get a properly set up system
or a later model of the system that handles things better.

GBA palettes. The �rst GBA model did not have a lit screen and this made
a lot of games seem quite dark in most conditions (and a handheld tends to
want to be played when out and about) so developers would frequent up the
contrast which was �ne and even agreeable on the original GBA but when the
SP game around which had a light in it some of the games looked somewhat
washed out of colour. There have since been several hacks to port either the
original colour palette in the case it was a port (helped by the GBA and SNES
usually a fairly similar scheme) or otherwise improve it.

332

A somewhat related incident might be the methods by which Apple and
Microsoft chose to render fonts, they picked di�erent ways and in the end even
if they did not know it or know the underlying logic it seems people used to
either system would pick it and the �nd the alternative somewhat unpleasant to
see. It is not so much a problem on the handhelds where bad fonts are usually
just that (too narrow, too small, badly coloured, otherwise unreadable....) but
the home consoles which were and still are forced to straddle the older video
standards and the newer ones that have been dubbed HD have fallen short here
when it comes to scaling their fonts.

It was mentioned earlier but some older systems that were forced to go
through RF methods to get into a TV quite often used that things would be
made a bit fuzzier in a similar manner to the noise idea mentioned in the previous
section.

13.0.11 Network coding

One of the classic quotes from the days of the FPS quake runs something like
�everybody turn your ping down� which of course can not happen directly (al-
though there are things that can be done to lessen it on the user end usually by
changing equipment) but in various ways movement can be predicted with a fair
accuracy (teleporter aside you probably are not going to appear on the other
side of the map and if indeed an object in motion tends to stay in motion your
bearing and speed can be used to predict where you will be). Although con-
nections have increased in speed they have not really got better on the latency
front (which is still well within the realms of human perception) but network
coding has so things are done to predict movement and resolve con�icts here.
Sometimes it is not that e�ective but often it is and you might well want to
tweak it.

14 Game design and media

There is a long history of those engaged in science and engineering and those
engaged in more artistic pursuits not seeing eye to eye (indeed there is a very
good chance that after you as a ROM hacker have �gured out a format and
maybe made a proof of concept that you will hand it over to an artist to make
it look nice) but it is well worth knowing the basics of the �other side� as it will
help �gure out why something was done, allow you to envisage how you might
improve something and might even allow you to do something you otherwise
deemed impossible (indeed as mentioned elsewhere the whole of game AI is
based around trying to use a combination of simplistic routines to provide some
challenge to a human being that for the time being at least is far smarter than
the machine they are playing with and very di�erent in terms of operating logic)
or at least work more e�ciently within limits.

Now such �elds are somewhat outside the scope of this document but if you
are reading this chances are you have the internet and as such it is worth noting
that very high level discussion of topics including games, video/�lm making,
literary works (both �ction and argumentative techniques) and the conventions
and expectations of each medium are readily available as well as more subjects
like psychology and game theory.

333

Related to this is the concept that game developers and localisation teams
are usually under a lot of pressure to put the game out by a certain date with
certain restrictions and as such might cut corners which you might be able to
exploit or have to work around.

15 Python, batch �les and programming for ROM

hacking

ROM hacking has traditionally favoured C, C++ and visual basic as the pro-
gramming languages of choice although now some inroads have been made into
C# and related languages (VB.net) as they are very good at rapidly creating
fast GUI driven tools and plain C has fallen out of favour somewhat. Quite sur-
prisingly and in deference to much of the rest of computing (it is taught as one
of the main languages in a lot of computing schools and is used everywhere as
anybody that has had to administer enterprise/business software will tell you)
Java has not featured heavily and neither have many of the other high level
languages like perl, lisp and the subject of this section python although this is
certainly not to say those languages have not had great ROM hacking oriented
programs made with them. If it is a choice between learning the command
line/bash scripts and learning python then learn the command line/bash but a
bit of python will help you do a lot.

15.1 radare2 reverse engineering tools

If you have managed with the rest of this document then programming is not
necessarily going to be hard for you to do. However as it has to be able to
do lots then it can be more annoying to make a simple program if you have
to set it all up. Equally it has been observed that despite frequently having
some serious programming related skills, and probably knowledge of how data
formats are constructed than most others out there, not all ROM hackers can
easily knock out a program to do a given task (although more modern languages
like python and C# are very capable and not so troublesome to learn). Var-
ious tools do various aspects of ROM hacking in a manner that is less �ddly
than a programming language (although obviously less capable than a proper
programming language), less likely to induce boredom than going by hand and
more versatile than some of the �eld speci�c tools.

The suggested tool nowadays would probably be radare2 (sometimes called
r2) which features a lot of nice things. The previous choice of program was one
called ROMulan but its licence was felt a bit too restrictive to be the suggested
program any more.

The documentation has basic usage but the main niceties are easy inte-
gration into scripts, extensibility via plugins and collection of hacking related
functionality built into it.

15.2 Programming languages

Before moving onto python if you are searching for a computer language to
use with ROM hacking there are a few requirements although for the most
part they do not need to be fast unless you are dealing with compression and

334

http://www.radare.org/y/?p=documentation
http://stealth.hapisan.com/ROMulan/
http://stealth.hapisan.com/ROMulan/ROMulan.html#License
http://www.radare.org/y/?p=documentation

complicated search functions although even then with people tending to have
multi core processors in the gigahertz range as long as it works within two
orders of magnitude of a �fast� language you can probably get away with that
too. On the matter of open source unless you are required to do it (using a GPL
program as a base for yours for instance) there is no real stigma attached to
keeping sources closed in ROM hacking circles (most ROM hackers that build
tools are no strangers to making a piece of spaghetti code to get the job done
that is no use to anybody learning or anybody looking to further/adapt your
works) although open source is always welcome and encouraged (�le formats
and data/ROM structures on the other hand tend to want to be shared).

1. Must be able to open any �le. This usually counts out the likes of SQL and
other database type languages, maths and statistics focused languages (R
and matlab for instance) and other �eld speci�c programming languages
(avisynth for instance). It might be possible but it will be a headache in
the long run.

2. Must be able to do binary manipulation (shift and rotate down to a 1
bit level and include boolean logic (AND, XOR, OR, NOT....). Some
languages do not do well here but most of those are usually discounted
thanks to the point above. Equally it is better if all this comes as a
standard function in the language or the basic/standard libraries of it as
having to make your own is not going to be fun.

3. GUI making should be relative easy. Command line tools are great and
if possible do include command line options (you never know when some-
thing is going to want to be put into a batch �le) and you could always
build a wrapper in another language if your program is command line
only but if you can use it to build a GUI as well as the above points you
probably have a good pick for a language.

15.3 Python

There are a great many books but Think Python is one of the best for people that
know ROM hacking and computing concepts and struggle with hand holding
that many learn programming books focus on. On a similar note much of the
Apress Beginning ? From Novice to Professional series are also good for those
that know concepts but just need everything focused a bit. UNSW Comp 1917
video lectures also provide a nice introduction to a lot of concepts.

16 PC program hacking

Once more this is a section that is both worthy and has documents far longer
than this one on just individual things. Much of what has been said thus far
applies as �le formats both custom and common are used, compression is used
and assembly, albeit now x86 and x64, is back on the cards but there are quite
large di�erences as well as the PC whatever OS you use has a security system
and several fairly complex methods of working, encryption (usually bad and
closer to obfuscation, which is another popular thing to do, and as such able
to be defeated) is popular and more importantly the languages used and APIs
available are far more extensive.

335

http://greenteapress.com/thinkpython/thinkpython.html
http://www.youtube.com/watch?v=hE7l6Adoiiw&feature=BFa&list=PL6B940F08B9773B9F

Speaking of security this section will not cover some of the higher level as-
pects of defeating protection as they can get quite involved and the �eld is quite
fast moving not to mention if you understood the idea behind some of the de-
feating protection methods (with the additional note that some modern PC pro-
grams can and do fetch actual useful pieces of code from the internet/networks)
and how to work around obfuscation (one neat trick is to optimise the program)
you are better o� venturing out into the internet and watching conference videos.
Equally this section will not really be covering anything on hacking programs
in an attempt to wrest control of the computer into the hands of an attacker
(again see conference videos and elsewhere on the internet) or really anything
on cheating (it works much the same on any system). Basically this section
will be on pure functional reverse engineering of programs where no or minimal
attempts to prevent it exist.

Despite the di�erences there are several big advantages
PC programs in many ways are able to be debugged far more easily than

many of the systems ROM hackers will be looking at (although emulators count
for a lot here).

PC programs quite commonly use high level languages that frequently allow
for decompilation and/or massive simpli�cation for the reverse engineer.

It should also be noted sometimes full reverse engineering is not required
and instead just how the functions are called in a program (many programs are
just frontends for custom DLL �les).

Executable packing and encryption Although you can always use a dis-
assembler, of which there are several available with the standard tool being
IDA (as far as X86 is concerned there is a paid version and a freeware version
that is usually just the paid version but several versions back), many computer
programs will have packed executables and/or use encryption as well as obfus-
cation. To this end although you can simply feed a diassembler something if it
is packed or encrypted and only rendered into �plain� at runtime you will just
get out gibberish.

16.1 Debugging

OllyDbgis what most people have as an entry level tool and it provides a nice
disassembler and basic debugging/listing tools.

Cheat engine works in a similar manner to the likes of emuhaste covered
back in cheat making.

Further down the line you have things like
DLL export viewer to get a rough idea of what the DLL �les input options

(and function names) and scope is.
GDIView (open fonts and what they are set as and similar things)
Device IO viewer for when you need to reverse engineer drivers.
Nirsoft opened �les viewer to know what programs have opened what and

there is also Process explorer which does similar things.
Rec attempts to turn programs developed in C back into something resem-

bling source code.
As mentioned the big tool that most people eventually wind up with a copy

of though is IDA as it is both disassembler and debugger which allows for a lot
of abilities here.

336

http://www.hex-rays.com/products/ida/index.shtml
http://www.ollydbg.de/
http://cheatengine.org/
http://www.nirsoft.net/utils/dll_export_viewer.html
http://www.nirsoft.net/utils/gdi_handles.html
http://www.nirsoft.net/utils/device_io_view.html
http://www.nirsoft.net/utils/opened_files_view.html
http://technet.microsoft.com/en-us/sysinternals/bb896653
http://www.backerstreet.com/rec/rec.htm

16.2 Decompilation

Traditionally compilation was a one way a�air33 and indeed most of paid pro-
gramming revolves or perhaps revolved around this concept. As people continue
research into computer science and people use higher level languages decompila-
tion which is the act of turning a binary �le into source code (probably and sadly
lacking comments) becomes ever more viable. This is not to be confused with
reverse engineering as a whole which has always been able to be done (indeed
most of this guide aims to teach methods to do this) although a large amount
of the time to do it is often necessary.

Interpreted languages By and large anything that is not directly related
to C or Assembly is probably going to be a scripting/interpreted language as
opposed to a truly compiled language (lines can get very blurred though as C#
will probably demonstrate). However rather than leaving it as human readable
code there will be a conversion to something known as bytecode (it is still faster
to manipulate nice selections of numbers of known lengths than parse a complete
selection of human readable text which could be any length although there are
also tools that help shorten this) which will eventually get turned into assembly
instructions (sometimes at the start of running and sometimes just before it
is needed- a technique known as Just In Time compilation) but said bytecode
can frequently be turned back into source code. There are countless interpreted
languages but if you search for decompiler and the interpreted language you
want to decompile you will usually get something. Naturally there are ways to
intentionally and unintentionally obfuscate your program and indeed some of
the interpreted languages runtimes o�er methods by which to do this at various
levels.

C# Although C# is strictly speaking a compiled language much like the �pre-
decessors� C and C++ and other members of the C family it comes with a very
large collection of libraries and runtimes (one of the main reasons for it to be
created was to in fact provide a standard collection of them to stop programs
having to have many and varied versions all over a system) which can be called
upon by programs using the language. Knowing this several tools have been
made to remove the calls and formulate how they are called leaving just the
actual custom code that was created in the �rst place. A variety of tools exist
for it with some of the more popular ones being ilspy (open source), dotPeek
(freeware) and .NET Re�ector (paid)

33There is a problem known as the halting problem which revolves around the fact that
you can produce an algorithm that can not produce a result from every combination of inputs
(the classic if slightly wonky example would be what is the square root of negative one?). In
practice this is typically seen you can not evaluate a program for every possible input and it
also relies on the idea that human input is kind of hard to mimic/account for and is relied
on for the program to function. However you can approximate solutions and run programs in
an attempt to get a typical output or constrained set of inputs (although you can put inputs
into a function which causes an error much of modern programming is designed to prevent
from happening - it often being both the causes of crashes and means by which hackers can
do what they do) which is what decompilation research has put of a lot of e�ort into not to
mention modern X86 processors (and compilers and coding techniques for them) that try to
predict the most logical path and do it before it is asked to.

337

http://wiki.sharpdevelop.net/ilspy.ashx
http://www.jetbrains.com/decompiler/
http://www.jetbrains.com/decompiler/
http://www.reflector.net/

C The decompilation of C++ is not that far advanced at this point in time
but the decompilation of C is somewhat more advanced than it has been in the
past and tools like REC used in conjunction with the debugging type methods
above can do a lot towards getting away from assembly.

17 Version control and project management.

The two big reasons for projects to become abandoned are people lacking skills
to do the job which is solved by gaining skills and not translating the latest
and greatest epic 90 hour RPG when you are �rst learning to hack and failures
in project management meaning people do not get the chance to do things or
end up waiting on others and the whole things falls apart as people move on to
other projects.

17.1 Project and team management

Various terms get thrown about here and the idea is popular throughout soci-
ety. Although it has in many cases quite rightly been chastised and made fun
of there are a few things that can be learned from it. Most people when putting
a team together will tend to have people of di�erent skills come together to
make hopefully achieve something greater than they might be able to by them-
selves. There is no unifying idea behind this section but some thoughts and
observations.

Translation There are three common roles in translation e�orts with the
actual translation being one, the editing of the translation for the purposes of
the game being another (there might be limits on lengths and screen space)
and proof reading (which ideally is not conducted by either of the �rst two)
which can also be amalgamated into general editing. Several translations have
attempted to omit the latter (both professionally and in ROM hacking projects)
which often leads to a cleanup having to be made later in life. Once again
loekalization.com has a lot of interesting things on the matter and Densetsu's
Translation Toolbox is another valuable resource.

ROM hacking Quite often there are two types of hacker on the team and
that usually means one to do a lot of the longer winded basics (it is a faux
pas to ask for a table for a game unless the game does something odd in the
encoding for a reason) and another to help with higher level concepts and maybe
assembly with the second maybe not being a permanent team member. Tool
development tends to be split between the two groups quite evenly as well.

Artwork and music Nowadays it probably warrants being split into 2d and
3d and maybe fonts as well although most of the time in hacking existing fonts
are adapted for use or minor tweaks to the ones that come with a game rather
than actual font development happening. Still as things get more detailed (not
that 2d has not been that way for decades now) having people on a team solely to
deal with artwork and music from the creative side of things is highly suggested.

338

http://www.backerstreet.com/rec/rec.htm
http://www.loekalization.com/mistakes.html
http://gbatemp.net/topic/311523-densetsus-translation-toolbox/
http://gbatemp.net/topic/311523-densetsus-translation-toolbox/

Level designers Granted with most of ROM hacking typically being focused
on translation e�orts or solo projects (or would be solo projects with a couple of
team members of similar ability) and equally most people that �nd themselves
contemplating hacking a game will usually understand a lot of it at an intuitive
level this is not as common a role as it is in general game development or even
the likes of modding PC games. However with level editors being made and
level editing happening not to mention the idea of total conversions the idea
of having a level designer as a team member is perhaps not as alien as it was
some time before. Also the idea of game theory and the related psychology has
been mentioned a couple of times in the document and related to that is the
idea of mechanism design as from a programming standpoint multiplying by 4 is
no di�erent to multiplying by 7 (ignoring ideas like over�ow and limitations of
size) yet an experience generation rate of nearly twice that of another (see some
of the third party servers for games like world of warcraft and the criticisms
of those when they increase experience multipliers), a score progression twice
that of another and especially in games like those that might be described as
real time strategy a battle speed of twice that of another makes for a radically
di�erent game.

�project manager� In real life this can be a role but as far as ROM hacking
goes it is usually a role adopted by a single person within a team (usually one
with a fairly limited role or role that is not always going to be needed throughout
a project). There have been a few project managers in ROM hacking but in
practice it has seemed to be those that might just be lending a few skills to
a project (say a hacker capable of text editing and such but less skilled in
assembly) or someone that has previously managed a project (very much leading
to a catch 22 situation where experience is necessary but getting experience is
not going to happen unless you already have it).

Pipeline management The most basic case of this is injection software for
text. Your other team members might have amazing skills in other areas and
fair levels of technical ability but it might still fall to you. If you have to hand
edit 3000 separate �les it gets very tedious very fast so automating a bit of that
is important and likewise it cuts the other way and if your translator will have
to view and edit in a hex editor or deal with a mountain of programming extras
it will probably not go well. This is usually where version control and things
that might one day end up as Gantt charts appear.

17.2 Version control

Usually associated with programming and more recently big development and
at best weakly observed by ROM hackers as far as actual projects as concerned
(programming tools is a di�erent matter) there are never the less some things
that can be learned from this. As ever it comes with a collection of �eld speci�c
terms but most of these will usually have been learned by being around software
(especially open source software) the last decade or so. Still A Visual Guide to
Version Control has a nice explanation of many of the concepts.

There are countless �standards� with some of the big ones being

339

http://betterexplained.com/articles/a-visual-guide-to-version-control/
http://betterexplained.com/articles/a-visual-guide-to-version-control/

� CVS Although this is rapidly falling out of fashion as it is not being
developed it is one of the older methods and has a long history.

� Mecurial A fairly new option in version control but as it o�ers several nice
features it has become fairly popular to the point of starting to catch up
with the older methods.

� svn aka subversion. Been around for quite a while and more or less became
the successor to CVS when that stopped being developed although the
others mentioned have made big headway into it.

� GIT Another relative newcomer but rapidly gaining popularity.

� Fossil Something of a standalone self contained tool if you want it but
able to set up web servers (including local ones) with a little wiki and a
checkout and more as necessary and can have access �ne tuned.

� Perforce The only paid software on this list (there are many other paid
software version control systems) but one quite commonly used in actual
game development.

Additionally your translator might wish for a related class of tool to use for this.
They are known as CAT (computer assisted translation) tools and are all but
mandatory in the professional translation realms and seen as you in the ROM
hacking �eld are going up against them it pays to look at what they did before
you but those are covered back in text hacking.

Back on topic you can use it to store speci�cations you are reverse engineer-
ing, artwork and music you need to convert, text you have extracted, custom
programs you are making for the editing (quite often you might build a basic
program and edit in speci�cs so being able to jump back for your next pro-
gram/project is great - remember programming has long been about reuse of
existing code and concepts) as well as completed patches as a whole. Done
properly it will also allow others to pick up if someone drops out.

It is generally considered mandatory for professional programming projects
these days and going back to the developer left extras there are often little �les
generated by these tools that are left in ROMs that can provide some insight.

18 Interesting links and further reading.

Many areas thus far had to be skimmed over or otherwise not given as much
attention at they might deserve either because they are �elds unto themselves or
because despite them existing elsewhere in games they might not be immediately
relevant to the GBA and DS. This is then to provide some search terms and
links to start looking at these things in a more in depth manner.

18.1 Links

This section is mainly going to be a link dump of all the links elsewhere in this
document.

340

http://savannah.nongnu.org/projects/cvs
http://mercurial.selenic.com/
http://subversion.apache.org/
http://git-scm.com/
http://www.fossil-scm.org/index.html/doc/trunk/www/index.wiki
http://www.perforce.com/

18.2 Further reading

There is a great deal more to learn about and that games will be using as
time goes on (already in the PC side of things games are seen using database
programming techniques, for instance see some of the things that went into
reverse engineering world of warcraft).

The 3d section touched upon some of it but with the GBA and DS hardware
being so limited some of the aspects of texturing and lighting models were at
best skimmed over and at worst omitted entirely.

Game theory was brie�y mentioned and although quite dangerous to learn
about if you would like to keep being entertained (it really is the equivalent of
seeing how the tricks are done) the applications of it are nearly endless.

On a similar manner learning about certain aspects of psychology from the
more practical things like visual psychology which informs a lot of aspects of
games (we know humans tend to see motion even if it is static frames played
at the rate of about 17 frames a second, we know the human eye does better
detecting luminance (brightness) than it does colours (and there blue is harder
to detect well) and that certain parts of the frame are more likely to not have
errors noticed in (this leads to the idea of the quantisation matrix)) to the more
philosophical/sociological things things like Joseph Campbell's The Hero with a
Thousand Faces which details the similarities between mythologies and ponders
how they might apply more in general to humans. Related to that is some of
the aspects of �lm and photography and how things work there for games are
a largely visual medium and despite all the technical content of this document
games tell stories and convey concepts in a creative manner and seeing your
work that involved you taking a basic 2d sprite and using it to generate a 3d
model, hand coding in ASM using newly developed areas of maths an enhanced
3d engine that surpasses the limits of the hardware to provide features not seen
this side of places with rendering farms not function well from a storytelling
perspective as you did not frame the camera properly/use proper composition
is in many ways quite tragic.

341

Part IV

File formats (speci�cations,
methods and known formats).

This part aims to detail some of the basic �le formats that are known when it
comes to DS ROM images as well as a handful of more advanced and unusual
ones. Also mixed in here are some quick overviews of the DS hardware and
some guides to pulling formats apart.

19 General things about the DS

Hardware, memory DS 2d, DS 3d, DS sound,

20 Generic DS nitro SDK format

Files formats that might not necessarily have been seen before but likely started
life as a variation on the SDK formats seen on the DS tend to have a certain
broad set of characteristics that go into the layout. Most of the time it will be
little endian across the length of the section but there are a few deviations here.

The �rst is usually a 4 character (but occasionally more) ASCII name that
if the extension did not classify it already this soon will (it will likely be �ipped
around but that is not certain).

Usually around byte 8 there will be a value that .
Location (hex) Size (bytes) Description

0 4 ASCII magic stamp unique to the �le format
4 4 Padding (other formats will use size)
8 2 or 4 Size of whole �le or section if in a container
C 2 Size of this header (usually �xed)
E 2 For archive formats number of sections

It is not set in stone and there are formats SDK that will do other things.
After this it will tend to be data relevant to the information it holds or more
information if it is an archive format. Unlike many other formats elsewhere in
computing a hexadecimal magic stamp is not that common in nitroSDK formats.

21 General �le reverse engineering

This section has thoughts and ideas that go into reverse engineering �le formats
from scratch. A lot of the concepts are covered partially elsewhere but more
importantly many are very simple and although they are far from foolproof they
work far more often than they do not.

The two things you want to have when reverse engineering (other than a full
spec or maybe source code) are lots of examples of the format and a version of
the �le containing a lot of primitives of the sort of thing it contains (although
having versions with more advanced features is useful as well).

342

Two popular sites hosting a lot of information about formats are xentax.com
and multimedia.cx (aimed more at multimedia but houses a large amount of
information on the music and video formats used in games).

DGTEFF has a nice alternative viewpoint on a few of the techniques covered
here and �The De�nitive Guide to Exploring File Formats� is well worth a read.

21.1 Headers

There are found in most �les and can get a lot done. Usually contain an identi-
fying mark, an overall �le length, a length of the header itself, locations of the
other areas that contain information, maybe �le names or at least �le identi�-
cation of some form.

Subheaders also exist where the format can have a basic information header
and another to actually cover the contents of the �le.

21.2 File sizes

Ignoring packing formats unless you are looking inside one �le sizes can give
a clue as to their content. For instance if you are reverse engineering a 2d
graphics format and you have two small �les and a big �le the smallest is a toss
up between the layout and the palette and the largest is probably going to be
the actual tile data.

21.3 Multiple versions of the game

Now this does not necessarily mean v1.1 versions (although they can be useful)
but if you can have a Japanese version of the game sitting alongside a European
version and a North American version the di�erences between them in both
names and contents of the �les can say lots of things about what is contained
within.

21.4 File names and extensions

Related �les are usually named similar things (quite often with numbers) and
are placed either close together or in similar order if kept apart even if the
actual �le name holds little value. Extensions mean little outside of Windows
computes

21.5 Tile viewers

Assuming your �le is not compressed and even if you are not looking for imagery
take a look over it with a tile editor and appropriate palette. Although most of
us recognise numbers instinctively we are still hardwired to look for visual cues
so if you see large chunks of �blank� space you are probably not looking at text
and likewise you can get an idea of patterns (header, information and then more
header and more information for example). Hex editors also quite often o�er to
colourise the hex window/portion although this is not that ideal in many cases.

343

http://wiki.xentax.com/index.php/Game_File_Format_Central
http://wiki.multimedia.cx/index.php?title=Main_Page
http://wiki.xentax.com/index.php?title=DGTEFF
http://www.romhacking.net/docs/464/

21.6 Pointers and such

More often than not you will �nd yourself extracting data without much idea
what the pointers say but on the �ip side if you see a group of what could be
pointers (usually after the initial header) try following them and breaking up
the �le accordingly.

22 Sound

22.1 SDAT

SDAT is the dominant audio format on the DS and although by itself it contains
no sound information it holds the locations and relationships between the various
�les it contains.

Location Size Description

22.2 SSEQ

Location Size Description

22.3 STRM

Occasionally seen outside the SDAT �le. �O�cially� the only one that does.

344

Location Size Description

22.4 SWAR

Location Size Description

22.5 SWAR

Location Size Description

345

22.6 BANK

Location Size Description

22.7 Other formats

See http://gbatemp.net/topic/305167-the-various-audio-formats-of-the-ds/
Location Size Description

Location Size Description

346

Location Size Description

23 Graphics

2d

23.1 NCER

Location Size Description

23.2 NANR

Location Size Description

347

23.3 NCGR

Location Size Description

23.4 NSCR

Location Size Description

23.5 NMCR

Location Size Description

23.6 NFTR

A common font format seen in the DS. Has seen a few revisions as well.

348

Location Size Description

3d

23.7 NSBMD

A 3d model format with an optional texture section (material colours are avail-
able as as separate textures).

Location Size Description

23.8 NSBTX

The NSBMD �le can house textures to be used but separate textures are avail-
able for those that need them.

Location Size Description

349

23.9 NSBCA

An animation format for the NSBMD family. Several developers opted out of
using NSBCA and wrote their own animations.

Location Size Description

24 Packing format

24.1 NARC, ARC and CARC

ARC had been seen for several years by the time NARC rolled around. CARC
just a compressed version of the format.

Location Size Description

25 Text

Although most text is custom and what many ROM hackers spend a large
amount of their time �guring out Nintendo has provided a text format in their
SDK that some developers and quite often Nintendo themselves use.

25.1 BMG

The short version is U16 unicode stacked on top of sometimes relative, some-
times standard pointers stacked on top of a fairly standard nitroSDK format.

350

Location Size Description

351

Part V

Glossary, index and such

26 Glossary

A glossary of terms

� Absolute - also known by function name ABS. If a number is negative it
returns the positive value (-4 becomes 4) and if it is positive it also returns
the positive value. Useful when dealing with signed values.

� Abstraction - the process of turning low level concepts into higher level
ones usually with the aim of simplifying implementation or ease of main-
tenance.

� Act imagine - former name for mobiclip and sometimes term for the video
encoding method they make.

� Action replay - a device that e�ects memory hacking and catch all term
for any device or code that also hacks memory to cheat.

� Address - the location of some data or �les.

� ADPCM - A slightly more advanced encoding method for storing repre-
sentations of wave �les. Usually has a wrapper and is supported by the
DS audio system.

� AND - a boolean operation. Classi�ed as outputs high if all inputs are
high. The inverse of NAND.

� Anti Piracy - a term used to describe a technique used by developers to
prevent copied games from working properly.

� AP - see Anti Piracy

� ARM - can refer to ARM the company or ARM mode in the processors
used by the DS and GBA.

� ARM7 - the secondary processor of the DS and main (only) processor of
the GBA and when in GBA mode.

� ARM7TDMI - the speci�c type of ARM7 processor seen in the GBA and
DS.

� ARM9 - the main processor of the DS.

� ASCII - an older 8 bit (7 bit in practice) method for encoding text and de
facto standard for most �les until proper text is needed.

� ASM - see assembly.

� Assembler - can refer to either the program to turn ASM code into ob-
ject/machine code or the computer language assembly. See also Assembly.

352

� Assembly - a series of low level computer languages that correspond di-
rectly to machine instructions and that vary widely between processor and
system architecture.

� Binaries - collective name for the �les that house the code processors run
although they do not have to just house processor code.

� Binary - either refers to the base 2 numbering system (1 and 0) or the �le
that houses the code that the processor runs.

� BIOS - the inbuilt code for the GBA and DS that has functions programs
can use and governs the basic operation of the system.

� Bit - a single binary digit. Usually represented by 1 or 0 depending on
whether it is used or empty.

� BLZ - a name for the DS binary and overlay speci�c LZ compression.

� Boolean logic - a class of operations and electronic gates that allow for the
manipulation of signals.

� BPP - Bits per pixel. Refers quite literally to how many bits represent
each pixel although usually seen with a number in front of it to indicate
type.

� BSDi� - a general purpose patching format without many of the limits of
IPS used to patch �les for modern systems. Rival to Xdelta.

� CARC - the compressed version of the NARC archive format.

� Ceiling - when using �oating numbers this rounds to a higher number
(negative goes closer to 0/closer to positive in�nity)

� Cheating - refers to changing memory values to e�ect changes within a
game (�action replay�) or changing what the game sees the ROM image
as (�game genie�)

� Checksum - a process by which data is analysed and certain key things
noted about it that allows another to (hopefully) detect whether it has
been changed since the checksum was made.

� Codebreaker - a device that e�ects memory hacking (sometimes referred
to as �action replay� codes) for cheating purposes.

� Compiler - a tool for turning high level languages into code that can be
run on a processor. Verb is to compile.

� Compression - the act of reducing the size of a �le but allowing it to still be
read. Two categories known as lossy and lossless each with many methods.
Common lossless methods include LZ, U8 and Hu�man.

� Coprocessor - a secondary processor some machines have to help with
certain task.

353

� Crystaltile2 - all in one hacking tool featuring assembly viewer and editor,
hex editor, class leading tile editor, tile viewer and support for many DS
formats.

� Decompiler - a tool for turning machine code back into a high level lan-
guage. Exists more for very high level languages as compiling is often
considered a one way process.

� Desmume - the emulator with the highest compatibility with DS ROMs.
Features some debugging capability.

� Dipstar - earliest DS cheating program that worked on real hardware.

� DMA - direct memory access. A method by which a device can move
sections of data in memory without having to go through the processor.

� DPS - Deufeufeu patching system. A custom patching format that ac-
counts for the DS �le system and used in Jump Ultimate Stars translation.

� DS - Nintendo's successor to the GBA with two screens and a touchscreen.

� DSi - a later model of DS with extra features and slightly more powerful.

� Dummying - the act of replacing a �le (usually multimedia) with a �le of
zero size of the smallest possible version of a format.

� Dumping - the act of dumping either an entire ROM/ISO or part of a
format from the original container.

� EEPROM - A type of permanent storage (although traditionally quite
small) used to store game saves. Also seen in lower levels of circuits to
hold data.

� ELF - A format used to store executable code. Commonly used by Unix
based systems (linux and BSD) as well as homebrew developers.

� Emuhaste - a tool that attaches to emulators which allows memory viewing
and manipulation. Mainly used for cheat making but has other uses.

� Encoding - the act of making a code. In ROM hacking it usually refers to
assigning a series of hexadecimal numbers to represent characters.

� Encryption - a process of obscuring the original data and (hopefully) mak-
ing it viewable only by those that have the relevant keys.

� Endianness - the order by which bytes are read. Di�ers between the
common PC which reads it as an ordinary number and most other systems
which have the smallest portion �rst.

� EUC-JP - a common type of 16 bit Japanese text encoding. Less common
than shiftJIS in DS games.

� Filesystem - the process of putting di�erent pieces of code and concepts
into di�erent �les and de�ning where they are outside the basic constraints
of memory. You can unpack a �lesystem.

354

� Firmware - the updatable code on the DS and many �ash carts that pro-
vides a basic user interface and some additional functions and system
management.

� Fixed point - another method by which computers can handle non integer
numbers and quite literally means the point after which the non integer
part starts. Seen in the DS 3d systems.

� FLASH - A type of permanent storage. Expensive (relatively speaking)
and used both in Flash carts and save storage. Has various types as well
(NAND and NOR being the big two).

� Flip - the act of rearranging bytes orders.

� Float - the process by which most computers and programs handle non
integer (whole) numbers.

� Floor - when using �oating numbers this rounds to a lower number (neg-
ative goes away from 0/closer to negative in�nity)

� Furigana - a pronunciation key for Kanji but in practice often used as a
type of footnote.

� Game genie - a name for a device from a defunct company that allowed
people to alter what a console saw on a cartridge and catch all term for
codes/devices that do similar things. Name now used on an �action replay�
style device.

� GBA - gameboy advance from Nintendo. A handheld console from Nin-
tendo.

� GPIO - general purpose IO. On the GBA and DS various pieces of hard-
ware attach to it and allow access via it. Includes controls and coprocessors
with extra abilities.

� Graphics - the practice of representing an item or location visually. One
of the main areas of ROM hacking.

� HasteDS - an older program that attaches to emulators to allow develop-
ment of cheats. Replaced for more by Emuhaste.

� Header - a common technique to include information about the �le to
come. Usually found at the start or end of a �le or sub�le.

� Hex editor - a tool that displays the raw contents of a �le and usually
the location in it and a readout using a given encoding with the default
usually being ASCII.

� Hexadecimal - a numbering system that allows for larger numbers of bits
to be conveyed more e�ectively. Often what the contents of a ROM or
ISO are rendered as.

� Hirgana - smoother �owing symbols used in Japanese mainly for native
words.

355

� Hooking - the act of getting extra code to run where no intentional opening
was provided for it.

� HUFFMAN - a type of compression the arranges lengths of code and
classi�es them according to how often they repeat assigning shorter lookup
values for the

� IDA - a program for reverse engineering code ostensibly from any CPU or
system (although you might have to write a �le containing a listing of the
operations of the system). Considered the top of the line by many unless
you are dealing in very specialist �elds and/or paying telephone numbers
for the reverse engineering tools.

� Insertion - the act of putting edited content back into a ROM. Usually
refers to text.

� Interpreted language - a language that is left as source code or a close
equivalent until runtime. Java, Python, Lua and Lisp have interpreted
options.

� Interrupts - methods by which code can halt the currently running piece
of code when something changes.

� Inversion - the act of turning a 1 into a 0 and vice versa.

� IPS - oldest patch format in common use in ROM hacking. No longer in
common use on modern systems owing to limitations.

� ISO - Name of a world standards body but also refers to a copy of data
from a piece of optical media.

� ISO 9660 - a common method of storing data on CDs and DVDs.

� Kana - the collective term of the Hiragana and Katakana Japanese pho-
netic letter systems.

� Kanji - the complex symbols used in Japanese that originated in Chinese.
They are ideographs and one Kanji represents one word or combined to
make a compound word.

� Katakana - angular looking Japanese symbols used mainly for loanwords.

� Lisp - a very extensible high level programming language used for a handful
of programs like the assembler ARMish.

� Lua - a high level programming language that has been seen in some DS
games like Puzzle Quest.

� LZ - Short for Lempel Ziv. The name for the broad class of �sliding
window� compression where data earlier in the �le is referred to in the
event of a repeat.

� LZ77- a variation on LZ compression devised in 1977. Often mistakenly
used as a catch all term for modern LZ compression or mistakenly as an
alternative to LZSS.

356

� LZM - a variation of the type of compression

� LZSS - a derivative of LZ77 (itself a version of LZ) and basis for some of
the GBA and DS compression algorithms.

� LZW - Lempel Ziv Welch. A variation on the LZ compression.

� Mapping - the process of attaching various pieces of memory to a common
method of access.

� Memory - a device for storing data.

� Mobiclip - name of the company that makes the Act Imagine/MODS/VX
video encoder.

� MODS - extension and magic stamp of a Mobiclip video format.

� NAND - a boolean operation. Classi�ed as outputs high if none of the
inputs are high. The inverse of NAND and fundamental operation from
which all other Boolean operations can be constructed.

� NARC - an archive format available in the NitroSDK and fairly widely
used.

� NEF - originally a Nintendo internal debugging helper format it later got
supported in no$gba and Crystaltile2.

� Nitro hax - a program that allowed �ash cart users on the DS the ability
to have memory hacking on normal games.

� Nitro SDK - a term commonly used to describe the development kit Nin-
tendo ships to licensed developers that features many �le types.

� no$gba - one of the better emulators for the GBA and at one time the
DS. Debugging support is available in the debugger version which is freely
available nowadays. It is also tied to the GBAtek speci�cations for the
GBA and DS.

� NOP - short for No OPeration. An instruction that does nothing which
either allows things the time to complete or a hacker to remove an instruc-
tion without shifting the following code.

� NOR - a boolean operation. Classi�ed as outputs high if none of the
inputs is high. The inverse of OR.

� NOT - a boolean operation. Classi�ed as outputs high if the input is low.
Also know as invert.

� NSBMD - name for the DS SDK format for handling 3d imagery. Probably
the dominant format.

� OAM - Object Area Memory. The section of memory that controls where
sprites are located on the GBA and DS screens.

� O�set - when discussing pointers it refers to pointers that do not start
counting from the start of the �le.

357

� ollydbg - a program commonly used to analyse, reverse engineer and debug
Windows executable �les.

� Opcode - a mnemonic for the base component of instruction to be run on
a processor.

� OR - a boolean operation. Classi�ed as outputs high if any input is high.
The inverse of NOR.

� Overlay - a technique used on the DS where a portion of memory is set
aside and replaced to allow di�erent functions to happen in a limited space.

� Patching - most ROM hacks are distributed as lists of changes and patch-
ing is the act of applying a patch. Also refers to removing of protection
measures.

� PCM - A way of storing/encoding a representation of an audio wave �le.
Also a general �le format for some games like N+.

� PE - portable executable. The technical name for the exe and dll �les
used by windows to house executable code.

� Pointer - a method by which the location of data is noted. Can be used
for �le formats, in machine code, in graphics, in text, in sound and more.

� Python - high level programming language that is commonly used in gen-
eral computing and fairly suited to ROM hacking.

� RAD BINK- name for a video format commonly seen in computer games.

� Relative - when discussing pointers it refers to pointers that take their
own location into account (add 20 to current address for instance)

� Relinking - the process of changing where a �le is found by changing the
address. Usually done as part of ripping to decrease size or to get �les to
play out of intended order.

� Ripping - sometimes a synonym for dumping in both senses but also the
act of removing �les to decrease ROM/ISO size.

� RLE - run length encoding. A primitive/special case version of LZ com-
pression that takes long runs of a single type of code and note the char-
acter and length. Seen on earlier consoles as well as some later ones and
commonly used in text (although not really on the GBA or DS).

� ROM - Read Only Memory. Refers often to ROM image which is a copy
of the data from a cartridge.

� Romaji - Japanese characters rendered as Roman characters according to
how they sound when they are pronounced.

� Rotate - the act of moving bits a given amount in one direction or another.
Bits not in the original length return the other side (1001 rotated left
becomes 0011)

358

� RTC - real time clock. The process of adding a clock that knows the time
on the device (and hopefully the real world) usually so as to add events
accordingly. Seen on the GBA where it was an on cart extra (needing
patches to run on �ash carts without the hardware for it) and on the DS
where it was part of the main system.

� SDAT - the dominant sound format for DS commercial games.

� SDK - short for software development kit. See also Nitro SDK.

� Sector - a method by which small address numbers can be extended to
allow for a larger range.

� Shift - the act of moving bits a given amount in one direction or another.
Bits not in the original length are lost.

� ShiftJIS - a common type of 16 bit Japanese text encoding. Typi�ed by
the upper 4 bits usually being 8 or 9

� Signing - a process of making a checksum but using encryption style meth-
ods to (hopefully) mean only someone with the relevant keys can generate
a new checks.

� SRAM - Save RAM. A broad use type of memory used by the GBA and
several other systems and �ash carts for the purposes of save games. Noted
for needing a battery to hold data between uses in many setups.

� SSEQ - the �midi� style tracker format used but the SDAT sound format.
Linked to Bank.

� Table - a list of values and the characters they represent.

� TCM - tightly coupled memory. Two small (16 and 32 kilobytes for the
di�erent types) memory sections internal to the processors of the GBA
and DS.

� Text - the practice of using symbols to represent ideas and sounds. Com-
mon target for ROM hacking.

� THUMB - a cut down but theoretically faster and more compact operating
mode for the GBA and DS processors.

� Tinke - One of the general purpose ROM hacking toolkits aimed at DS
games featuring support for several common �letypes and more.

� TWL SDK - the newer SDK that replaced the NitroSDK on later DS
games and was mainly used on DSi and DSi extra features games.

� U8 - an archive type often seen in the Nintendo consoles Gamecube and
Wii.

� Unicode - a fairly complex method for encoding text, erroneously com-
pared to the simpler variation called U16 unicode.

� UPS - patching format and an intended successor to IPS but came after
XDelta and BSDi� became established.

359

� VBA-SDL-h - the hacking and debugging fork of the GBA emulator VBA.

� VBA. Visual boy advance, a gaming grade GBA emulator. Forked into
VBA-m when VBA stopped being developed.

� VRAM - Video RAM. The location where the data that will be displayed
on the screen should the OAM and BG handler allow it is kept.

� VX - older version and extension of Mobiclip/act imagine video format.

� WRAM - Work RAM. The name for the location of the general use mem-
ory on the GBA and DS.

� XDelta - another general purpose patching format without limitations of
IPS used to patch �les for modern systems. Rival to BSDi�.

� XNOR - a boolean operation. Classi�ed as outputs high if both inputs are
the same. Inverse of XOR and also usually only seen in two input form.

� XOR - a boolean operation. Classi�ed as outputs high if one and only
one input is high. Usually only seen in two input format. The inverse of
XNOR.

� YAZ0 - another compression type seen largely in the gamecube and Wii.
Technically a version of RLE.

360

	I Introduction
	II ROM hacking concepts
	Basics
	Hexadecimal
	Representation
	BCD (Binary coded decimal)
	Big and little endian
	Signed values, floating point and fixed point

	Hex operations
	Shift
	Rotate
	Flip
	Boolean logic
	Hex Mathematics.

	Patching and patch making
	File systems and operations
	Non filesystem devices
	GBA
	DS
	3DS
	GC (gamecube)
	Wii
	Xbox
	Xbox 360
	PS1 and PS2
	PS3
	PSP
	Saturn
	Dreamcast
	Amiga
	PC and related hardware.

	Finding the object of your interest.
	Abstraction
	Tools of the trade continued
	Hex editor
	Tile editor
	Spreadsheet and command line
	Compression
	Music
	ASM/Assembly

	Basic file format concepts

	Graphics
	Aliasing
	Haloing
	Bit depth

	Palettes and colours
	GBA colours (15 bit)

	Tiles
	1Bpp
	4 Bpp
	8Bpp
	GBA3 Xbpp
	GBA2 4BPP
	Bitmap
	Known formats
	Crystaltile2 export and import.
	Avoiding gradients, AA, lossy compression, noise and such things.

	Layout, timing, OAM and special effects
	Introduction to the OAM and BG modes.
	Timing
	GBA and DS OAM (sprites)
	GBA and DS BG modes
	Basic animation
	Window feature
	Special features (flipping, affine transformation, alpha and such)
	Basic DS layout formats and mapping
	Video memory handling and alignment

	3d
	Basic 3d (bones, coordinates, keyframes)
	Viewpoints
	Textures and material colours
	Models
	Lighting/shadows
	3d smoke and fog
	Animations
	DS 3D hardware
	The shift of the 3D to DS 2d
	NSBMD
	Non NSBMD

	Notes and further reading

	Text
	Tables
	Relative searching
	Corruption and alteration
	Memory viewing and corruption
	Frequency analysis
	Language analysis
	Pointer and encoding/hex analysis
	Assembly tracing
	Font viewing
	Language comparing
	Table creation tools

	Pointers
	Special cases and non pointer concepts
	Example reverse engineering of pointers

	Markup, control codes and placeholders
	Worked example

	Fonts
	NFTR
	Common hacks

	Scripting and layout
	Layout and limits

	Text extraction and insertion
	Text extraction
	Text insertion

	Language detection in DS games
	Translation hacking
	The types of Japanese characters and how they work -
	Japanese glyphs/characters and observations on the language
	On language
	Right to left languages and translation.

	Japanese text editors and translation tools
	General Japanese capable text editors
	ROM hacking tools
	CAT tools

	Multimedia
	Sound
	SDAT (NDS)
	Others
	Tracker formats
	General rule of thumb for custom audio formats
	Common DS SDAT audio hacks (undubbing, injection, tweaks and relinking)
	GBA audio

	Video
	General video theory
	Mods/VX/act imagine by Mobiclip.
	RAD/Bink
	Criware

	Cut scenes

	Game logic
	Levels and Stats
	Example tools
	Level editing techniques
	Stats
	RPG randomiser

	Compression
	Lossy
	Lossless
	Basic theory of the actual implementations
	Compression at hexadecimal level

	Cheating
	General cheat making
	GBA cheat making
	DS cheat making
	Basic making of a cheat
	Cheat prevention methods and frustrations
	Instruction editing cheating

	Programming concepts
	Functions and procedural programming. Also return oriented programming/ROP
	IF ELSE
	Recursion
	Iteration
	Loops
	Turing complete
	Fundamentals of Assembly

	Assembly
	ARM
	GBA Assembly specifics
	DS Assembly specifics
	The GBA and DS compared
	On controls
	Hooking
	GBA cart as extra memory for DS hacks

	Non specific assembly discussion.
	Language mod example
	Non code in ASM
	Destructive vs non destructive assembly editing
	Polymorphic and dynamic code
	Slowdown and speedup
	Cryptography (encryption, checksums and signatures)
	Multiplayer and the failure of Nintendo's online DS security.
	Save editing
	Interpreted languages
	Game AI, game logic and game theory

	Flash cart and emulator theory
	GBA
	DS

	ROM hacking ``protection''

	III Examples, oddities and techniques.
	Crystaltile2 general usage guide
	GBA tracing
	Worked examples

	DS tracing
	Cart read command
	Basic lookup and methods for it
	Header reverse engineering/generated values

	Reverse engineering various ROM images
	Large archive on top of filesystem
	Tony Hawk
	Star Wars - The Force Unleashed
	El Tigre Make my mule

	Compression
	First Person Game
	Platformer
	Fighting games
	Role playing games
	Racing games
	Puzzle
	Mahjong game
	Tetris

	Other genres

	Developer leftovers
	Workarounds
	Moving to a new system
	Developer tricks aka thinking like a game developer
	Level and mechanism design
	Sprite and palette reuses
	Pre rendering
	Speed blur and fog
	Loading covers
	Optimisation of loading
	3d imagery in general
	Procedural generation
	Noise on images and sound.
	Using the limits of the system/working to them
	Network coding

	Game design and media
	Python, batch files and programming for ROM hacking
	radare2 reverse engineering tools
	Programming languages
	Python

	PC program hacking
	Debugging
	Decompilation

	Version control and project management.
	Project and team management
	Version control

	Interesting links and further reading.
	Links
	Further reading

	IV File formats (specifications, methods and known formats).
	General things about the DS
	Generic DS nitro SDK format
	General file reverse engineering
	Headers
	File sizes
	Multiple versions of the game
	File names and extensions
	Tile viewers
	Pointers and such

	Sound
	SDAT
	SSEQ
	STRM
	SWAR
	SWAR
	BANK
	Other formats

	Graphics
	NCER
	NANR
	NCGR
	NSCR
	NMCR
	NFTR
	NSBMD
	NSBTX
	NSBCA

	Packing format
	NARC, ARC and CARC

	Text
	BMG

	V Glossary, index and such
	Glossary

