ASM Tutorial

Written by Jay

Table of contents

1)	Introduction

2)	CPU Register/Flags

3)	Addressing Modes

4)	Opcode Reference

5)	FAQ's

1) Introduction

This is a tutorial on 65816 asm used in the snes, made easy for dumb people to understand (sorta). In case you are wondering, I don't program in this language, so it is possible that I will write something incorrectly in this tutorial. If so, you can e-mail me at tennj@yahoo.com, to complain about how I suck at tutorials. Learning asm language isn't easy. If you already know a high-level programming language, the process will be a lot more easier. If you already know a low-level programming language, then you may scrap my tutorial as you probably won't need it. (This tutorial is for dumb people remember?) The purpose of this tutorial to for you to learn the basics of asm.

2) CPU Registers/Flags

The 65816 CPU has a set of registers and flags. So what the hell is a register? You may think of a register as sorta a storage space. Like a variable. Each register has it's own purpose. The standard registers are A, X, Y, D, S, PBR, DBR, PC, and P. Now I will explain the usage of each register.

A - Accumulator:

The accumulator is a general purpose math register. In other words, we can store anything we feel like into it and perform math operations to it. For example, if you wanted to store $20 into the accumulator, then you can do this:

	lda #$20	(lda = Load Accumulator with value)

and then if you want to add 5 to it (assuming carry clear {<-more on this later}):

	adc #$05	(adc = Add to accumulator with carry)

 and the accumulator will have the value 25 in it.

The accumulator can either be 8-bits and 16-bit. What I mean by this is when the accumulator is 8-bit, it can only hold values from (0 - 255), but when it's 16-bit it can hold values from (0 - 65535). There is absolutely no way of telling when the accumulator is 8 or 16 bits unless you check bit 5 of the P flag (again more on this later). If bit 5 is set, then accumulator is 8-bit, otherwise it's 16-bit.

X, Y - Index Registers:

The X, Y registers is much like the accumulator. You can store values into it and perform math operations. However, they serve one additional purpose. They are used to index memory locations. The X, and Y registers like the accumulator, can be 8 or 16 bits depending on bit 4 of the P flag.

D - Direct Page Register:

The direct page register is a pointer that points to a region within the first 64k of memory. This register is used to access memory in direct addressing modes. In direct addressing mode, a 8-bit value (0 - 255) is added to the direct page address, which will form an effective address. For example, if the direct page register was $5000, then:

	sta $10	(sta = Store accumulator to address)

will store the accumulator to address $5000 + $10 = $5010.

S - Stack Register:

The stack register points to a region where the stack is stored. So what is a stack? Think of it this way. Suppose you have a table. When you push a book on the stack, you place the book on the table. Suppose you push another book on the table, so you have 2 books on the table. Now when you pop a book, you remove the top book off the table. So what the heck am I saying with all this push and pop crap? We can push values and pop values off and on the stack. Every time we push a value onto the stack, the value is stored at where the stack is pointing to and the stack will decrement. When we pop a value from the stack the value is stored to the destination and the stack increments. Eg.

Suppose our stack was at $1FFF, then

	pea $1000	(pea = push effective address)

we push $1000 onto the stack, the stack pointer will be at $1FFD since $1000 takes up 2 bytes.

	pla		(pla = pop to accumulator <-assuming 16-bits)

will store the accumulator with $1000 and the stack register restored to $1FFF.

PBR - Program Bank Register:

The program banks register hold the current bank the code is running in. Usually, an absolute address passed with a JMP (Jump to location) or JSR (Jump to subroutine) uses the PBR register to form an effective address. eg.

	PBR: $80	(The current value of PBR)

	jmp $1C00

will jump to location $80:1C00.

DBR - Data Bank Register:

Like the PBR register, this register refers to data accesses.

	DBR: $90

	lda $8000	(Load accumulator from address)

loads a value from $90:8000.

PC - Program counter:

This register hold the address of the location of the current instruction. Along with PBR, PBR:PC forms the effective address to the current instruction.

P - Flag Register:

The flag is a 8 bit register that stores the state of the CPU. It can also tell you whether the accumulator and index registers is 8 or 16 bit. The layout of the flag is:

| n | v | m | x | d | i | z | c |

n: Negative

v: Overflow

m: Memory/Accumulator Select

x: Index Register select

d: Decimal

i: Interrupt

z: Zero

c: Carry

Each of the boxes above represent the bits in a byte. Therefore, you must convert the flag register from decimal to binary, then compare it to above to check which flags are set. The carry flag is usually set on error or and unsigned overflow. The adc (Add with carry) command performs addition to the accumulator and adds 1 if carry is set. So to perform a pure add, you must clear the carry flag first.

	clc		(Clear carry flag)

	adc #$20

So if you were wondering what I was talking about earlier in the tutorial about carry, now you know. The m and x flag controls whether the accumulator and index register is 8 or 16 bits. When m is set, then accumulator is 16 bits. Most assemblers can not detect whether you are working with an accumulator of 8 or 16 bits so it is up to you to keep track of the m flag as you program. Failure to do so will result in a very hard to debug code. We can use the SEP (Set P flag) and REP (Reset P Flag) to set and clear flags. To make the accumulator 16 bits, we take the binary code 00010000 and convert it to hex, $20 or decimal #32, and do

	rep #$20

which will make the accumulator 16-bits.

3) Addressing Modes

Addressing mode is how the processor interprets a command. In other words, we cannot say that:

	lda #$20

means the same as

	lda $20

The first mode loads $20 directly to the accumulator. The second loads a byte from address: direct page + $20. Therefore, a lesson on addressing modes must be taught. From the examples here, the accumulator and index registers are assumed to be 8-bit.

First let's consider a few things in the syntax I use below.

<exp> is an expression.

A <8-bit exp> is an 8-bit expression. An 8-bit expression is any number between $00 - $FF.

A <16-bit exp> ranges from $0000 - $FFFF.

A <24-bit exp> as you guessed it, from $00000 - $FFFFFF

A <dp exp> is a direct page expression. A dp expression is a <8-bit exp> but it refers the direct page, and is always written in hex and is 2 digits. The direct page is always calculated by the <dp exp> + D.

An <abs exp> is a <16-bit exp> but is always written in hex and has 4 digits.

A <long exp> is a <24-bit exp> but is 6 digits and also written in hex.

Immediate:

opcode #<8/16-bit exp>

Immediate address mode is specified with a value.

eg.

	lda #$FF	; Loads accumulator with $FF.

	sep #$30	; Puts $30 into P

Direct:

opcode $<8-bit exp>

The destination is formed by adding the direct page register with the 8-bit address to form an effective address.

eg.

	lda $20	; Loads from $20 + D

	lda $90	; Loads from $90 + D

If D = $1000, then it will read a byte (if A is 8-bit) from address $1020.

Absolute:

opcode $<16-bit exp>

The effective address is formed by DBR:<16-bit exp>.

eg.

	DBR: $88

	lda $901C	; Loads a byte from address $88:901C

Absolute Long:

opcode $<24-bit exp>

The effective address is the expression.

eg.

	lda $808000	; Loads a byte from $80:8000

	lda $FF9090	; Loads from $FF:9090

Accumulator:

opcode

The destination is the accumulator.

eg.

	inc	; Increments the accumulator

Implied:

opcode

The opcode has it's own special function.

eg.

	clc	; Clears carry flag

	inx	; Increments the X register

Direct Indirect Indexed:

opcode ($<dp exp>), y

This is where the index registers come into play. 2 bytes are loaded from the direct page address to form a base address that is combined with DBR. Finally y is added to the base address to form the absolute address.

eg.

	DBR: $80,	D: $0020,	Y: 0001

Memory dump:

0030:	30 40 23 22 F4 22 23 1C

0038:	23 2D DD F4 FF FF FF FF

	lda ($10), y

First we will calculate the DP address:

	$10 + D = $0030

Then pull 2 bytes from $0030, 30 & 40 (and they are reversed for the LSB ordering) to get the address $4030. The address ($4030) is used with DBR to get the base address.

DBR:$4030 -> $80:4030

The base address is added with y to create the effective address.

base + y = $80:4030 + $0001 = $80:4031

Basically, the command loads a byte from $80:4031 to the accumulator. Usually, this mode is used in a loop where Y is incremented each time to pull a set of data from a memory location.

eg2.

	DBR: $80,	D: $0020,	Y: 0001

Memory dump:

0030:	30 40 23 22 F4 22 23 1C

0038:	23 2D DD F4 FF FF FF FF

	lda ($15), y

	DP Address = $0020 + $15 = $ 0035

	Base Address = DBR:<2 bytes from $0035>

			= $80:2322

	Effective Address = Base Address + Y = $80:2323

P.S. I may make this more complicated that it looks. Most of the time the D register is 0, and therefore takes a lot less time calculating all of this.

Direct Indirect Indexed Long:

opcode [$<dp exp>], y

This mode is like the previous addressing mode, but the difference is that rather than pulling 2 bytes from the DP address, it pulls 3 bytes to form the effective address.

eg.

	(Same example as last time)

	eg.

	DBR: $80,	D: $0020,	Y: 0001

Memory dump:

0030:	30 40 23 22 F4 22 23 1C

0038:	23 2D DD F4 FF FF FF FF

	lda [$10], y

DP Address = $0020 + $10 = $0030

Base Address is form by pulling 3 bytes from $0030, 30 40 23 which becomes the address $23:4030. Now we add Y to the base address to form the effective address $23:4031.

Direct Indexed Indirect:

opcode ($<dp exp>, x)

The direct page address is calculated and added with x. 2 bytes from the dp address combined with DBR will form the effective address.

eg.

	DBR: $80	D: $0020	X: $0004

	Memory dump:

	0020:	FF 00 FF 09 33 33 09 88

	0028: 08 76 66 36 D7 23 99 00

	lda ($02, x)

First DP address is calculated.

	DP Address = $02 + D = $0022

Then added with X

	dp address + x = $0026

2 bytes are pulled from $0026, (09 88) to become $8809, and combined with DBR:

	DBR:$8809 = $80:8809

which will be the effective address of where the byte is loaded.

Direct Indexed by X:

opcode $<dp exp>, x

The DP address is added to X to form the effective address. The effective address is always in bank 0.

eg.

	D: $0020	X: $0004

	lda $30, x

DP Address = $30 + $0020 = $0050

Effective Address = DP Address + X = $00:0054

Direct Indexed by Y:

opcode $<dp exp>, y

Same as above except we add the Y register instead of X.

Absolute Indexed by X:

opcode $<abs exp>, x

The absolute expression is added with X and combined with DBR to form the effective address.

eg.

	DBR: $80	X: $0001

	lda $8000, x

Effective address = DBR:($8000 + x) = $80:8001

	lda $6988, x

Effective address = DBR:($6988 + x) = $80:6989

Absolute Long Indexed by X:

opcode $<long exp>, x

The effective address is formed by adding the <long exp> with X.

eg.

	X: $0001

	lda $808000, x

loads a byte from $80:8001.

	lda $589112, x

loads from $58:9113

Absolute Indexed by Y:

opcode $<abs exp>, y

Same as Absolute Indexed by X, except with Y.

Program Counter Relative:

opcode $<8-bit signed exp>

This addressing mode is only used in branch commands. The <8-bit signed exp> is added to PC (program counter) to form the new location of the jump. The <8-bit signed exp> can range from (-128 to 127). Most assemblers will allow you to enter an <abs exp> in which the +-128 is automatically calculated.

eg.

	bra $8005	; branch to location $8005 as long as it's within the

; (-128 to 127) range

Program Counter Relative Long:

opcode $<16-bit signed exp>

Like above, but the range is between (0 to 65535). Only the BRL and PER commands use this.

Absolute Indirect:

opcode $(<abs exp>)

2 bytes are pulled from the <abs exp> to form the effective address.

eg.

	Memory dump:

	0000:	90 77 78 00 43 00 00 00

	0008:	33 32 12 33 11 11 FF FF

	jmp ($0008)

will first grab 2 bytes from $0008 (33 32), then jump to the address of $3233.

Absolute Indexed Indirect:

opcode $(<abs exp>, x)

The <abs exp> is added with X, then 2 bytes are pulled from that address to form the new location.

eg.

	X: 0001

	Memory dump:

	0000:	90 77 78 00 43 00 00 00

	0008:	33 32 12 33 11 11 FF FF

	jmp ($0008, x)

Abs Address = $0008 + X = $0009

2 bytes from $0009 = 32 12

$1232 is the new location.

Direct Indirect:

opcode ($<dp exp>)

2 bytes are pulled from the direct page address to form the 16-bit address. It is combined with DBR to form a 24-bit effective address.

eg.

	D: 0000	DBR: $80

	Memory Dump:

	0040: 50 00 80 00 22 23 33 44

	0050: 60 21 21 21 22 55 55 66

	

lda ($40)

DP Address = $40 + D = $40

16-bit address from $40 = $0050

Effective Address = DBR:$0050 = $80:0050

Direct Indirect Long:

opcode [$<dp exp>]

3 bytes are pulled from the direct page address to form an effective address.

eg.

D: 0000	DBR: $80

	Memory Dump:

	0040: 50 00 80 00 22 23 33 44

	0050: 60 21 21 21 22 55 55 66

	

lda [$40]

DP Address = $40 + D = $40

Effective address = 24-bit address from $40 = $80:0050

Stack:

opcode

Like implied but affects the stack.

eg.

	pha	; push Accumulator

	pla	; pop accumulator

Stack Relative:

opcode <8-bit exp>, s

The stack register is added to the <8-bit exp> to form the effective address.

eg.

	S: 1FF0

	lda 1, s

loads a byte from 1 + S = $1FF1.

Stack Relative Indirect Indexed:

opcode (<8-bit exp>, s), y

The <8-bit exp> is added to S and combined with DBR to form the base address. Y is added to the base address to form the effective address.

eg.

	S: $1FF0	Y: $0001	DBR: $80

	lda (1, s), y

Base address = DBR:($1FF0 + 1) = DBR:$1FF1 = $80:1FF1

Effective Address = $80:1FF1 + Y = $80:1FF2

Block Move:

mvn $<8-bit exp>,$<8-bit exp>

mvp $<8-bit exp>,$<8-bit exp>

This is by far the weirdest instruction I've seen. It bascially moves chunks of blocks from one place to another. The first $<8-bit exp> is the bank of the destination. The second is the bank of the source. X is loaded with the 16-bit address of the source, and Y is loaded with the 16-bit address of the destination. A is loaded with how many bytes to transfer.

eg.

X: ???? Y: ???? A: ????	rep #$30	; Make accumulator and index 16-bit

X: ???? Y: ???? A: ????	ldy #$8000	; load X with $8000

X: ???? Y: 8000 A: ????	ldx #$9000	; load X with $9000

X: 9000 Y: 8000 A: ????	lda #$0005	; lead A with 5

X: 9000 Y: 8000 A: 0005	mvp $80, $A0; block move increment

will transfer 5 bytes from $80:8000 -> $A0:9000

4)	Opcode Reference

Here is a simple explanation of most of the commands in asm.

ADC - Add with carry

The operand is added to the accumulator. 1 is added in addition is carry flag is set.

eg.

A: 0010	adc #$50	; adds $50 to accumulator or 51 if carry is set

A: 0060			; result

AND - Perform AND to accumulator

The operand is "AND"ed to the accumulator.

eg.

A: 0010	and #$80	; "AND"s $80 to accumulator

A: 0000

ASL - Left shifts Accumulator, Memory

Performs a shift left.

eg.

A: 0010	asl #$01	; Left shifts accumulator with 1

A: 0020

BCC - Branch is carry clear

Jump to a new location within the -128 to 128 range if the carry flag is clear. Useful for comparing 2 numbers, and branches if it is greater than.

eg.

P: --mxdi--		bcc next	; since the carry flag is clear, it'll jump to next

			lda #$00	; this will not be executed

		next:	lda #$40

BCS - Branch if carry set

Like BCC, but only when carry is set. Good for branching "if less than" in comparison.

BEQ - Branch if equal

Branches is zero flag is set. This is useful for comparing numbers.

eg.

	cpx #$50	; if X is = $50, the zero flag is set

	beq next	; branches to next if X = $50

	lda #$44

next:	lda #$00

BIT - Bit Test

Performs AND except only the flags are modified.

eg.

A: 0010	bit #$80	; "AND"s $80 to accumulator but result not stored

A: 0010

BMI - Branch if Minus

Branches if negative flag is set.

BNE - Branch if not equal

Branches if zero flag clear. Good when used with comparison. You can branch if the number it not equal to.

BPL - Branch if plus

Branches if negative flag clear.

BRA - Branch always

Hmm…..

BRK - Break to instruction

Causes a software break. The PC is loaded from a vector table from somewhere around $FFE6.

BRL - Branch Always Long

Like BRA but with longer range (0 - 65535).

BVC - Branch if Overflow Clear

Branches if overflow flag is clear.

BVS - Branch if Overflow Set

Opposite of BVC.

CLC - Clear Carry Flag

Clears the carry flag.

CLD - Clear Decimal Flag

Clears the decimal flag.

CLI - Clear Interrupt Flag

Clears the interrupt Flag.

CLV - Clear Overflow Flag

Clears the Overflow flag.

CMP - Compare Accumulator with memory

CPX - Compare X with memory

CPY - Compare Y with memory

Compares accumulator, X, or Y with an operand. The n-----zc flags are affected by the comparison. If the result is negative, the n flag is set. If the result is zero (or equal), the z flag is set. Carry is set usually when borrow is required.

eg.

A: 0020 P: --mx-i--		cmp #$20	; compare accumulator with $20

						; if equal, z flag is set

A: 0020 P: --mx-iz-		beq next	; branch if equal

COP - Coprocessor Empowerment

Causes a software interrupt using a vector.

DEC - Decrement Accumulator

DEX - Decrement X

DEY - Decrement Y

Subtracts 1 from A, X, or Y.

eg.

Y: 0001	dey

Y: 0000

EOR - Exclusive OR accumulator

Performs XOR (I think) to the accumulator.

eg.

A: FFFF	eor #$DDDD

A: 2222

INC - Increment Accumulator

INX - Increment X

INY - Increment Y

Adds 1 to A, X, or Y.

eg.

A: 0000	inc

A: 0001

JMP - Jump to location

JML - Jump long

he JMP command will jump to a location within the bank. The JML will jump to places out of the current bank.

eg.

PBR: $80	jmp $5500	; jumps to $80:5500

PBR: $80	jml $908000	; jumps to $90:8000

PBR: $90			; the PBR is updated in long jump

JSR - Jump Subroutine

JSL - Jump Subroutine Long

If you already know a programming language, this is basically calling a function. This performs the same as JMP except the address of the current program counter is saved. In subroutines, the RTS and RTL are used to return back to the saved address.

LDA - Load Accumulator with memory

LDX - Load X with memory

LDY - Load Y with memory

Loads the accumulator, X, Y with a value.

LSR - Shift Right Accumulator, Memory

Performs right shift.

eg.

A: 0080	lsr #$01	; shift right by 1

A: 0040

MVN - Block move negative

MVP - Block move positive

*See Block Move Addressing mode.

The difference between the positive and negative block move is that with negative block move, the source address is greater than the destination.

NOP - No operation

Does nothing but take up 2 cycles.

ORA - "OR" Accumulator with memory

Performs "OR" to accumulator.

eg.

A: 005F	ora #$7F

A: 007F

PEA - Push Effective Address

Pushes a 16-bit operand onto the stack. The instruction is very misleading because you are really pushing an immediate onto the stack.

eg.

S: 1FFF	pea $FFFF	; Pushes $FFFF onto the stack

S: 1FFD			; stack decrements by 2

PEI - Push Effective Indirect Address

Pushes a 16-bit value from the indirect address of the operand.

eg.

Memory Dump:

0000: 23 33 45 22 DD C7 FF 8D

0001: 99 99 90 88 DD FF CC 67

S: 1FFF	pei ($01)	; push $4533 on the stack

S: 1FFD

PER - Push Program Counter Relative

Pushes a 16-bit from that address taken by the current PC added to the operand. The range must be within (0 - 65535).

PHA - Push Accumulator

PHD - Push Direct Page Register

PHK - Push PBR

PHP - Push Flags

PHX - Push X

PHY - Push Y

Pushes the operand onto the stack.

PLA - Pull Accumulator

PLD - Pull Direct Page Register

PLP - Pull Flags

PLX - Pull X

PLY - Pull Y

Pops a value off the stack and stores it in the operand.

REP - Reset Flag

Clears the bits specified in the operands of the flag.

eg.

	rep #$30	; Clears bit 4 & 5 to make A, X, Y 16-bits

ROL - Rotate Bit Left

Much like shift left except any bits moved off the most significant bit are restored to the right.

eg.

A: 8000	rol #$0001	;rotate 1 left

A: 0001

ROR - Rotate Bit Right

Much like shift right except any bits moved off the least significant but are restored to the left.

eg.

A: 0001	ror #$0001	; rotate 1 right

A: 8000

RTI - Return from Interrupt

Used to return from a interrupt handler.

RTS - Return from Subroutine

RTL - Return from Subroutine Long

Return the PC to the saved address caused by the JSR and JSL command.

eg.

	jsl sub	; jump to subroutine at label "sub"

	 .

	 .

	 .

sub:

	lda #$0000	; some code

	rtl		; return

SBC - Subtract with Carry

Subtracts Accumulator with memory, and subtract and additional 1 is carry is set.

SEC - Set Carry Flag

Sets the carry flag.

SED - Set Decimal Flag

Sets the decimal flag.

SEI - Set Interrupt flag

Sets the interrupt flag.

SEP - Set Flag

Sets certain bits of the flag depending on the operand.

eg.

	sep #$20	; set bit 5 of P to make A 8-bits

STA - Store Accumulator to memory

STX - Store X to memory

STY - Store Y to memory

Stores the accumulator, X, or Y to a memory location.

eg.

A: 000F	sep #$20	; 8-bit A

A: 000F	sta $2100	; Stores $0F to $2100

STP - Stop the clock

Don't know how this works.

STZ - Store zero to memory

Stores zero to a memory location.

eg.

	stz $2101	; store 0 to $2101

TAX - Transfer Accumulator to X

TAY - Transfer Accumulator to Y

TCD - Transfer Accumulator to Direct Page

TCS - Transfer Accumulator to Stack

TDC - Transfer Direct Page to Accumulator

TSC - Transfer Stack to Accumulator

TSX - Transfer stack to X

TXA - Transfer X to Accumulator

TXS - Transfer X to Stack

TXY - Transfer X to Y

TYA - Transfer Y to Accumulator

TYX - Transfer Y to X

Copies the content of one register to another.

eg.

A: 0099 X: 1FFF Y:5656 D:0020 S: FFFF	rep #$30

A: 0099 X: 1FFF Y:5656 D:0020 S: FFFF	lda #$0000	; load A with 0

A: 0000 X: 1FFF Y:5656 D:0020 S: FFFF	tcd		; transfer A -> D

A: 0000 X: 1FFF Y:5656 D:0000 S: FFFF	txa		; X -> A

A: 1FFF X: 1FFF Y:5656 D:0000 S: FFFF	tcs		; A -> S

A: 1FFF X: 1FFF Y:5656 D:0000 S: 1FFF

You get the idea.

TRB - Test and Reset Bit

Tests the bit similarly to "AND", and clears it, while affecting the flags.

TSB - Test and Set Bit

Tests the bit similarly to "AND", and sets it, while affecting the flags.

WAI - Wait for Interrupt

Waits until a hardware interrupt is triggered.

XBA - Exchanges B with A

Due to the fact that the accumulator was either 8 or 16 bit, the low and high ends of the accumulator was given a name A and B (and C is the whole 16-bit Accumulator). This command swaps the low and high of the accumulator.

eg.

A: 5690	xba

A: 9056

XCE - Exchange Carry with Emulation

Well, the 65816 has actually 2 modes. Native and (6502) emulation mode. This tutorial deals with native only. The emulation bit shares the same bit as the carry flag so to put ourselves in native mode, we can only set the emulation flag via the carry and exchanging it. For native mode, the emulation flag must be off. To switch to native mode, we must clear the carry and exchange it.

eg.

	clc

	xce

5)	FAQ's

Q: Since the accumulator is 8/16 bits, how will disassemblers know when the accumulator is 8 or 16 bits?

A: It doesn't. Tracer has an option on there that will attempt to detect the Accumulator and index size. Use the -f switch.

Q: Sometimes the assembler compiles my JMP to a JML instruction. What should I do?

A: Try jmp.w

Q: OK. I got down all the basics. Does this mean I'll be able be able to hack snes roms like all the other groups out there with my newly gotten asm skills?

A: No. You must learn about the hardware. I don't cover this.

Q: Are you the coolest?

A: Yes.

Q: What about Tiger Claw? Ain't he cool too?

A: Ofcours
